A pebbling move on a connected graph G is taking two pebbles off of one vertex and placing one of them on an adjacent vertex. For a connected graph G, $G^p$ (p > 1) is the graph obtained from G by adding the edges (u, v) to G whenever 2 $\leq$ dist(u, v) $\leq$ p in G. And the pebbling exponent of a graph G to be the least power of p such that the pebbling number of $G^p$ is equal to the number of vertices of G. We compute the pebbling number of fourth power of paths so that the pebbling exponents of some paths are calculated.
In this article, we consider a proper total coloring distinguishes adjacent vertices by sums, if every two adjacent vertices have different total sum of colors of the edges incident to the vertex and the color of the vertex. Pilsniak and Wozniak [15] first introduced this coloring and made a conjecture that the minimal number of colors need to have a proper total coloring distinguishes adjacent vertices by sums is less than or equal to the maximum degree plus 3. We study proper total colorings distinguishing adjacent vertices by sums of some graphs and their products. We prove that these graphs satisfy the conjecture.
In this study, two reliability computational algorithms which respectively utilize a factoring method are proposed for a system represented by reliability block diagram. First, vertex factoring algorithm is proposed. In this algorithm, a reliability block diagram is considered as a network graph with vertex reliabilities. Second algorithm is mainly concerned with conversion of a reliabilities block diagram into a network graph with edge reliabilities. In this algorithm, the independence of edges is preserved by eliminating replicated edges, and in computing the reliability of a converted network graph, existing edge factoring algorithm is applied. The efficiency of two algorithms are compared for example systems with respect to computing times. The results shows that the second algorithm is shown to be more efficient than the first algorithm.
삼각형 메쉬(triangular mesh)로 이루어진 삼차원 영상의 큰 데이터량을 줄이기 위한 메쉬 부호화의 연구가 활발히 진행되고 있다. 그리고, 최근에는 삼차원 부호화 데이터의 네트워크 전송 문제가 대두되어, 점진적 부호화(proressive mesh compression)에 대한 알고리듬들도 제안되고 있다. 본 논문은 꼭지점의 위치 정보 및 간략화 과정의 꼭지점 패턴(vertex pattern) 규칙을 이용하여, 기존의 점진적 부호화 알고리듬의 부호화 성능을 개선한 알고리듬을 제안한다. 꼭지점의 위치 정보를 이용하여 기존의 알고리듬에 비해 낮은 엔트로피(entropy)를 얻었으며, 꼭지점 패턴 정보를 이용하여 복원시 분할 꼭지점(split vertex)의 탐색 범위를 한정하였다. 전산 모의 실험을 통해, 제안하는 알고리듬이 기존의 점진적 메쉬 부호화 연구에 비해, 연결 정보 부호화에서 대략 30%정도 향상된 부호화 성능을 가짐을 확인할 수 있었다.
This paper provides accurate flexural vibration solutions for thick (Mindlin) sectorial plates. A Ritz method is employed which incorporates a complete set of admissible algebraic-trigonometric polynomials in conjunction with an admissible set of Mindlin “corner functions". These corner functions model the singular vibratory moments and shear forces, which simultaneously exist at the vertex of corner angle exceeding 180$^{\circ}$. The first set guarantees convergence to the exact frequencies as sufficient terms are taken. The second set represents the corner singularities, and accelerates convergence substantially. Numerical results are obtained for completely free sectorial plates. Accurate frequencies are presented for a wide spectrum of vertex angles (90$^{\circ}$, 180$^{\circ}$, 270$^{\circ}$, 300$^{\circ}$, 330$^{\circ}$, 350$^{\circ}$, 35 5$^{\circ}$,and 359$^{\circ}$)and thickness ratios.tios.
A subset S of vertices of a graph G is independent if no two vertices of S are adjacent by an edge in G. Also we say that S is maximal independent if it is contained In no larger independent set in G. A planted plane tree is a tree that is embedded in the plane and rooted at an end-vertex. A (k+1) -valent tree is a planted plane tree in which each vertex has degree one or (k+1). We classify maximal independent sets of (k+1) -valent trees into two groups, namely, type A and type B maximal independent sets and consider specific independent sets of these trees. We study relations among these three types of independent sets. Using the relations, we count the number of all maximal independent sets of (k+1) -valent trees with n vertices of degree (k+1).
Let G be a simple connected graph with n vertices and m edges. Denote by d1 ≥ d2 ≥ ⋯ ≥ dn > 0 and d(e1) ≥ d(e2) ≥ ⋯ ≥ d(em) sequences of vertex and edge degrees, respectively. If vertices vi and vj are adjacent, we write i ~ j. The general sum-connectivity index is defined as 𝒳α(G) = ∑i~j(di + dj)α, where α is an arbitrary real number. Firstly, we determine a relation between 𝒳α(G) and 𝒳α-1(G). Then we use it to obtain some new bounds for 𝒳α(G).
본 논문에서는 파동분할(Wavepartitioning) 방식을 기반으로 꼭지점들간의 특징적인 관계(Vertex Pedigree)를 이용한 순차적(Sequential) 메쉬 부호화 방식을 제안한다. 파동분할 방식은 호수에 물방울이 퍼져 나가는 자연 원리를 이용하여 초기 삼각형의 주위에 삼각형을 덧붙여 가면서 하나의 SPB(Small Processing Block)을 만들어내는 방식이다. 이 방식을 이용하여 하나의 모델을 서로 독립적인 SPB로 분할하고, 각각의 SPB내에서 초기 삼각형을 중심으로 그것에 덧붙여진 삼각형에 의해 만들어진 원 또는 반원을 찾는다. 또한, 그 원주를 따라 순차적으로 꼭지점을 구하면 각각의 꼭지점들은 서로의 관계에 따라 일정한 패턴으로 늘어서게 되고, 이것을 이용하여 연결성 정보 없이 부가 정보만으로 모델을 순차적으로 무손실 부호화한다.
Several methods for PCB pattern inspection have been tried to detect fine detects in pad contours, but their low detection accuracy results from pattern variations originating from etching, printing and handling processes. The adaptive inspection algorithm has been newly proposed to extract minute defects based on movable segments. With gerber master images of PCB, vertex extractions of a pad boundary are made and then a lot of segments are constructed in master data. The pad boundary is composed of segment units. The proposed method moves these segments to optimal directions of a pad boundary and so adaptively matches segments to pad contours of inspected images, irrespectively of various pattern variations. It makes a fast, accurate and reliable inspection of PCB patterns. Its performances are also evaluated with several images.
A multi-dimensional design is most easily constructed via the amalgamation of one-dimensional component block designs. However, not all sets of component designs are compatible to be amalgamated. The conditions for compatibility are related to the concept of a complete matching in a graph. In this paper, we give sufficient conditions for unequal-replicate designs. Two types of conditions are proposed; one is based on the number of verices adjacent to at least one vertex and the other is ona a degree of vertex, in a bipartite graph. The former is an extension of the sufficient conditions of equal-replicate designs given by Dean an Lewis (1988).
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.