DOI QR코드

DOI QR Code

SOME INEQUALITIES FOR GENERAL SUM-CONNECTIVITY INDEX

  • MATEJIC, M.M. (Department of Mathematics, Faculty of Electronic Engineering, University of Nis) ;
  • MILOVANOVIC, I.Z. (Department of Mathematics, Faculty of Electronic Engineering, University of Nis) ;
  • MILOVANOVIC, E.I. (Department of Computer Science, Faculty of Electronic Engineering, University of Nis)
  • Received : 2019.06.19
  • Accepted : 2020.01.10
  • Published : 2020.01.30

Abstract

Let G be a simple connected graph with n vertices and m edges. Denote by d1 ≥ d2 ≥ ⋯ ≥ dn > 0 and d(e1) ≥ d(e2) ≥ ⋯ ≥ d(em) sequences of vertex and edge degrees, respectively. If vertices vi and vj are adjacent, we write i ~ j. The general sum-connectivity index is defined as 𝒳α(G) = ∑i~j(di + dj)α, where α is an arbitrary real number. Firstly, we determine a relation between 𝒳α(G) and 𝒳α-1(G). Then we use it to obtain some new bounds for 𝒳α(G).

Keywords

References

  1. A. Ali, I. Gutman, E. Milovanovic, I. Milovanovic, Sum of powers of the degrees of graphs: extremal results and bounds, MATCH Commun. Math. Comput. Chem. 80 (2018), 5-84.
  2. A. Ali, L. Zhong, I. Gutman, Harmonic index and its generalizations: extremal results and bounds, MATCH Commun. Math. Comput. Chem. 81 (2019), 249-311.
  3. B. Bollobas, P. Erdos, Graphs of extremal weights, Ars Comb. 50 (1998), 225-233.
  4. M. Dehmer, F. Emmert-Streib, Y. Shi, Quantitative graph theory: A new branch of graph theory and network science, Inform. Sci. 418 (2017), 575-580. https://doi.org/10.1016/j.ins.2017.08.009
  5. T. Doslic, B. Furtula, A. Graovac, I. Gutman, S. Moradi, Z. Yarahmadi, On vertex-degree-based molecular structure descriptors, MATCH Commun. Math. Comput. Chem. 66 (2011), 613-626.
  6. S. Fajtlowicz, On conjectures of Graffiti-II, Congr. Numer. 60 (1987), 187-197.
  7. F. Falahati-Nezhad, M. Azari, Bounds on the hyper-Zagreb index, J. Appl. Math. Inform. 34 (2016), 319-330. https://doi.org/10.14317/jami.2016.319
  8. B. Furtula, I. Gutman, A forgotten topological index, J. Math. Chem. 53 (2015), 1184-1190. https://doi.org/10.1007/s10910-015-0480-z
  9. I. Gutman, On the origin of two degree-based topological indices, Bull. Acad. Serbe Sci. Arts (Cl. Sci. Math. Natur.) 146 (2014), 39-52.
  10. I. Gutman, N. Trinajstic, Graph theory and molecular orbitals. Total ${\pi}$-electron energy of alternant hydrocarbons, Chem. Phys. Lett. 17 (1972), 535-538. https://doi.org/10.1016/0009-2614(72)85099-1
  11. I. Gutman, B. Ruscic, N. Trinajstic, C.F. Wilcox, Graph theory and molecular orbitals. XII. Acyclic polyenes, J. Chem. Phys. 62 (1975), 3399-3405. https://doi.org/10.1063/1.430994
  12. I. Gutman, I.Z. Milovanovic, E.I. Milovanovic, Relations between ordinary and multiplicative degree-based topological indices, Filomat 32 (2018), 3031-3042. https://doi.org/10.2298/FIL1808031G
  13. A. Ilic, Note on the harmonic index of a graph, Ars Comb. 128 (2016), 295-299.
  14. V.R. Kulli, On K edge index and coindex of graphs, Intern. J. Fuzzy Math. Arch. 10 (2016), 111-116.
  15. R. Li, The hyper-Zagreb index and some Hamiltonian properties of graphs, Discrete Math. Lett. 1 (2019), 54-58.
  16. Y. Ma, S. Cao, Y. Shi, I. Gutman, M. Dehmer, B. Furtula, From the connectivity index to various Randic-type descriptors, MATCH Commun. Math. Comput. Chem. 80 (2018), 85-106.
  17. M.M. Matejic, E.I. Milovanovic, I.Z. Milovanovic, Remark on general sum-connectivity index, Appl. Math. Comput. Sci. 2 (2017), 13-17.
  18. M.M. Matejic, I.Z. Milovanovic, E.I. Milovanovic, On bounds for harmonic topological index, Filomat 32 (2018), 311-317. https://doi.org/10.2298/FIL1801311M
  19. A. Milicevic, S. Nikolic, N. Trinajstic, On reformulated Zagreb indices, Molecular Diversity 8 (2004), 393-399. https://doi.org/10.1023/B:MODI.0000047504.14261.2a
  20. I.Z. Milovanovic, E.I. Milovanovic, M.M. Matejic, Some inequalities for general sum-connectivity index, MATCH Commun. Math. Comput. Chem. 79 (2018), 477-489.
  21. E. Milovanovic, M. Matejic, I. Milovanovic, Some new upper bounds for the hyper-Zagreb index, Discrete Math. Lett. 1 (2019), 30-35.
  22. D.S. Mitrinovic, J.E. Pecaric, A.M. Fink, Classical and new inequalities in analysis, Kluwer Academic Publishers, Dordrecht, 1993.
  23. D.S. Mitrinovic, P.M. Vasic, Analytic inequalities, Springer Verlag, Berlin-Heidelberg-New York, 1970.
  24. S. Nikolic, G. Kovacevic, A. Milicevic, N. Trinajstic, The Zagreb indices 30 years after, Croat. Chem. Acta 76 (2003), 113-124.
  25. T. Reti, I. Felde, Novel Zagreb indices-based inequalities with particular regard to semiregular and generalized semiregular graphs, MATCH Commun. Math. Comput. Chem. 76 (2016), 185-206.
  26. G.H. Shirdel, H. Rezapour, A.M. Sayadi, The hyper-Zagreb index of graph operations, Iranian J. Math. Chem. 4 (2013), 213-220.
  27. X. Xu, Relationships between harmonic index and other topologicl indices, Appl. Math. Sci. 6 (2012), 2013-2018.
  28. L. Yang, H. Hua, The harmonic index of general graphs, nanocones and triangular ben-zenoid graphs, Optoel. Adv. Mater. Rapid Commun. 6 (2012), 660-663.
  29. L. Zhong, K. Xu, Inequalities between vertex-degree-based topological indices, MATCH Commun. Math. Comput. Chem. 71 (2014), 627-642.
  30. B. Zhou, N. Trinajstic, On a novel connectivity index, J. Math. Chem. 46 (2009), 1252-1270. https://doi.org/10.1007/s10910-008-9515-z
  31. B. Zhou, N. Trinajstic, Relations between the product- and sum-connectivity indices, Croat. Chem. Acta 85 (2012), 363-365. https://doi.org/10.5562/cca2052
  32. B. Zhou, N. Trinajstic, On general sum-connectivity index, J. Math. Chem. 47 (2010), 210-218. https://doi.org/10.1007/s10910-009-9542-4