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PEBBLING EXPONENTS OF PATHS

Ju Young Kim and Sun Ah Kim

Abstract. A pebbling move on a connected graph G is taking two
pebbles off of one vertex and placing one of them on an adjacent
vertex. For a connected graph G, Gp (p > 1) is the graph obtained
from G by adding the edges (u, v) to G whenever 2 ≤ dist(u, v) ≤ p
in G. And the pebbling exponent of a graph G to be the least power
of p such that the pebbling number of Gp is equal to the number of
vertices of G. We compute the pebbling number of fourth power of
paths so that the pebbling exponents of some paths are calculated.

I. Introduction

Pebbling in graphs was first considered by Chung[1]. Consider a con-
nected graph with a fixed number of pebbles distributed on its vertices.
A pebbling move consists of removing two pebbles from one vertex u
and then placing one pebble at an adjacent vertex v. We say that we
can pebble to a vertex v, the target vertex, if we can apply pebbling
moves repeatedly so that it is possible to reach a configuration with at
least one pebble at v. The pebbling number of a vertex v for a graph G,
denoted by f(G, v), is the smallest integer m which guarantees that any
starting pebble configuration with m pebbles allows pebbling to v. And
the pebbling number of G, denoted by f(G), as the maximum of f(G, v),
over all vertices v.

A graph G is called demonic if f(G) is equal to the number of its
vertices. If one pebble is placed on each vertex other than the vertex
v, then no pebble can be moved to v. Also, if w is at distance d from
v, and 2d − 1 pebbles are placed on w, then no pebble can be moved
to v. So it is clear [1] that f(G) ≥ max{|V (G)|, 2D}, where |V (G)|
is the number of the vertices of G and D is the diameter of G. Let
G = (V (G), E(G)) be a connected graph. Then Gp (p > 1) (the pth
power of G) is the graph obtained from G by adding the edges (u, v) to
G whenever 2 ≤ dist(u, v) ≤ p in G. Hence Gp = (V (G), E(G) ∪ F (G))
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where F (G) = {(u, v) : 2 ≤ dist(u, v) ≤ p in G}. If p = 1, G1 = G. In
[5], they proved f(P2k+r

2) = 2k + r where o ≤ r ≤ 1. Let |V (G)| = n.
We know that if p is large enough (i.e., p ≥ n− 1) then Gp = Kn.

In [6], the pebbling exponent of a graph G (denoted by e(G)) is defined
to be the least power of p such that f(Gp) = |V (G)|.

In section 2, we calculate the pebbling number of the fourth power
of paths. Using the results in section 2, we give the pebbling exponent
of some paths in section 3.

2. The pebbling number of fourth power of Pn

In [6], f(Pn
2) was calculated but the proof is too long. So that result

was reproved by more simple method in [7]. It is known that the pebbling
number f(Pn) of the path Pn with n vertices is 2n−1 [1]. p(v) will denote
the number of pebbles at vertex v.

In [7], the following two lemmas were used to calculate f(Pn
2) and

f(Pn
3).

Lemma 1. [7] Let Pn
2 = x1x2 · · ·xn−1xn with n ≥ 7. If p(x) is even

for each vertex x of the graph Pn
2, then 2d

n−1
2
e pebbles are sufficient to

pebble x1 or xn.

Lemma 2. [7] Let Pn
3 = x1 · · ·xn with n ≥ 8. If p(x) is even for

each vertex x of Pn
3, then 2d

n−1
3
e pebbles are sufficient to pebble x1 or

xn.
Similarly we can get the following lemma 3.

Lemma 3. Let Pn
k = x1 · · ·xn with n ≥ 2k ≥ 8. If p(xi) is even for

each vertex xi of Pn
k, then 2d

n−1
k
e pebbles are sufficient to pebble x1 or

xn.
Proof. Let Pn

k = x1x2 · · ·xn with 8 ≤ 2k ≤ n, p(xi) be even
for xi. Place 2d

n−1
k
e pebbles on Pn

k. By symmetry, we assume that
v = x1. Let p(x1) = 0. If dn−1

k e = t, we can write Pn
k as Pn

k =
x0k+1x0k+2 · · ·x1kx1k+1 · · ·x1k+kx2k+1 · · ·x(t−1)kx(t−1)k+1 · · ·xn where (t−
1)k +1 < n ≤ tk +1. By moving as many pebbles as possible from each
xjk+r (2 ≤ r ≤ k + 1) to xjk+1 for j = 0, 1, · · · , (t − 1), there can
be at least 2t−1 pebbles at the vertices x0k+1x1k · · ·x(t−1)k+1. Since
x0k+1x1k+1 · · ·x(t−1)k+1 is isomorphic to Pt and f(Pt) = 2t−1, we can
put a pebble at x1.

Theorem 4. [6] f(P2k+r
2) = 2k + r when 0 ≤ r ≤ 1.
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Theorem 5. [7] f(Pn
3) = n if 1 ≤ n ≤ 7. For n ≥ 8,

f(Pn
3) =





2b
n
3
c + 1 if n ≡ 0 (mod 3)

2b
n
3
c + 2 if n ≡ 1 (mod 3)

2b
n
3
c+1 if n ≡ 2 (mod 3)

Above two theorems can be restated as followings.

Theorem 4′. f(Pn
2) = 2d

n−1
2
e + r when 0 ≤ r ≤ 1

Theorem 5′. f(Pn
3) = 2d

n−1
3
e + r when 0 ≤ r ≤ 2,

n ≥ 8 and n− 2 ≡ r (mod 3)

First, we note that f(Pn
4) = n for 1 ≤ n ≤ 13. The reason for that is

as follows. We proceed by induction on n. Clearly, the result is correct
if 1 ≤ n ≤ 5. Suppose that for all n′ with 5 ≤ n′ < n ≤ 13 we have
f(Pn′

4) = n′. We will show that f(Pn
4) = n. Place n pebbles at the

vertices of Pn
4 = x1x2 · · ·xn (the edges between xi and xi+4 are implied

for (1 ≤ i ≤ 9) and assume first that v 6= x1 or xn. Let v = xi with
2 ≤ i ≤ n − 1. We see that if the subgraph x1 · · ·xi ≡ Pi

4 contains at
least i pebbles and so we are done by induction. Otherwise the subgraph
xi · · ·xn ≡ Pn−i−1

4 contains at least (n − i − 1) pebbles and so we are
done by induction. Therefore, we may assume that v = x1 or xn. By
symmetry, we may assume that v = x1. Suppose that Σ5

i=2p(xi) ≥ 1.
Let p(xi) ≥ 1 for some 2 ≤ i ≤ 5. Then we can put one more pebble at xi

by using the remaining (n−1) pebbles on the subgraph x2 · · ·xn ≡ Pn−1
4

by induction. Since dist(x1, xi) = 1, we are done by moving a pebble
at x1 from xi. Otherwise Σ5

i=2p(xi) = 0. Then Σn
i=6p(xi) = n. For

6 ≤ n ≤ 9 there are at least two pairs on the subgraph x6 · · ·xn. Using
these two pairs on that subgraph we can put two pebbles at x5 and so
we are done because dist(x1, x5) = 1. For 10 ≤ n ≤ 13 the subgraph
x6 · · ·xn contains at least 4 pairs which are used to put two pebbles at
x5. And we are done.

Next, we show that f(P14
4) = 24, f(P15

4) = 24 + 1, f(P16
4) = 24 + 2

and f(P17
4) = 24 + 3.

(a) We show that f(P14
4) = 24.

First, we will show that f(P14
4) ≥ 24. Let P14

4 = x1x2 · · ·x14 (the
edges between xi and xi+4 are implied for 1 ≤ i ≤ 10) and place
(24 − 1) pebbles at x14. Then no pebble can be moved to x1 be-
cause dist(x1, x14) = 4, therefore f(P14

4) ≥ 24. Place 24 pebbles at
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the vertices of P14
4 = x1x2 · · ·x14. By symmetry, we may assume that

our target vertex is v = x1, x2, · · · , x8, or x9. If Σ9
i=1p(xi) ≥ 9, then

we are done because the subgraph x1 · · ·x9 is isomorphic to P9
4 and

f(P9
4) = 9. If Σ9

i=1p(xi) = 8, then Σ14
j=10p(xj) = 8. By moving as many

pebbles as possible from x10, x11, · · · , x13 or x14 to x9, we see that the
subgraph x1 · · ·x9 ≡ P9

4 contains at least 9 pebbles. So we are done. If
Σ9

i=1p(xi) ≤ 7, then Σ14
j=10p(xj) ≥ 9 and there are at least 4 pairs on the

subgraph x9 · · ·x14 ≡ P6
4. By Lemma 3, We can put 4 pebbles at x9 by

moving 4 pairs on the subgraph x9 · · ·x14 ≡ P6
4 to x9. So we are done

because dist(xk, x9) ≤ 2 for 1 ≤ k ≤ 9.

(b) We show that f(P15
4) = 24 + 1.

First, we will show that f(P15
4) ≥ 24+1. Let P15

4 = x1x2 · · ·x15 (the
edges between xi and xi+4 are implied for 1 ≤ i ≤ 11) and place (24−1)
pebbles at x15 and one pebble at x14. Then no pebble can be moved
to x1. Place (24 + 1) pebbles at the vertices of P15

4 = x1x2 · · ·x15. By
symmetry, we may assume that our target vertex is v = x1, x2, · · · , x8, or
x9. If Σ9

i=1p(xi) ≥ 9, then we are done because the subgraph x1 · · ·x9 is
isomorphic to P9

4 and f(P9
4) = 9. If Σ9

i=1p(xi) = 8, then Σ15
j=1p(xj) = 9.

By moving as many pebbles as possible from x10, · · · , x14 or x15 to x9,
we see that the subgraph x1 · · ·x9 ≡ P9

4 contains at least 9 pebbles and
we are done. If Σ9

i=1p(xi) ≤ 7, then Σ15
j=10p(xj) ≥ 10 and there are at

least 4 pairs on the subgraph x9 · · ·x15 ≡ P7
4. By Lemma 3, we can put

4 pebbles at x9 by moving 4 pairs on the subgraph x9 · · ·x15 ≡ P7
4. So

we are done because dist(xk, x9) ≤ 2 for 1 ≤ k ≤ 9.

(c) The proof of f(P16
4) = 24 + 2 or f(P17

4) = 24 + 3 are similar to
those of f(P14

4) = 24 or f(P15
4) = 24 + 1.

Theorem 6. For n ≥ 14, f(Pn
4) = 2d

n−1
4
e + r where 0 ≤ r ≤ 3 and

n− 2 ≡ r (mod 4).

Proof. First, we will show that f(Pn
4) ≥ 2d

n−1
4
e + 3 for n − 2 ≡ 3

(mod 4). Let Pn
4 = x1x2 · · ·xn (the edges between xi and xi+4 are

implied for 1 ≤ i ≤ n− 4) and place (2d
n−1

4
e − 1) pebbles at xn and one

pebble at each xj with j = n− 3, n− 2, and n− 1. It is easy to see that
a pebble can not be moved to x1, therefore f(Pn

4) ≥ 2d
n−1

4
e + 3.

Since the diameter of Pn
4 is dn−1

4 e for n − 2 ≡ 0 (mod 4), we have
f(Pn

4) ≥ 2d
n−1

4
e.

Similarly, f(Pn
4) ≥ 2d

n−1
4
e + r for n− 2 ≡ r (mod 4), r = 1 or 2.
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We proceed by induction on n. We have already showed that our
theorem is correct if n=14, 15, 16, or 17.

Case (a) r = 0.
Suppose that for all n′ with n′ < n and n′ − 2 ≡ 0 (mod 4) we have

f(Pn′
4) = 2d

n′−1
4
e. We will show that f(Pn

4) = 2d
n−1

4
e. Let n = 4l + 2

for some l ≥ 4. Then dn−1
4 e = l + 1. Place 2d

n−1
4
e(= 2l+1) pebbles at

the vertices of Pn
4 = x1x2 · · ·xn. Let v be the target vertex. Then there

are the following three possible cases (a.1), (a.2) and (a.3).
(a.1) v 6= x1, · · · , x4, xn−3, · · · , xn−1 or xn.
Let PA be the subgraph x5 · · ·xn and PB be the subgraph x1 · · ·xn−4.

Then both PA and PB are isomorphic to Pn−4
4. It is easy to see that PA

or PB contains at least 2d
(n−4)−1

4
e pebbles. By induction we are done.

(a.2) v = x1 or xn.
By symmetry we assume that v = x1. Suppose that Σ5

i=2p(xi) = 0.
Then there are 2l+1 pebbles on the subgraph x5 · · ·xn which is isomor-
phic to Pn−4

4. By induction we can put two pebbles at x5 using 2 · 2l

pebbles on the subgraph x5 · · ·xn. Because dist(x1, x4) = 1, we are
done. Otherwise Σ4

i=2p(xi) ≥ 1. Let j = min2≤i≤5{i | p(xi) ≥ 1}. For
p(xj) ≥ 2, we are done. Let p(xj) = 1. Then there are 2l−1 pairs on
the subgraph xj · · ·xn because d (2l+1−(n−j+1)

2 e ≥ 2l = 2 · 2l−1. By using
these 2l−1 pairs on that subgraph we can put one more pebble at xj and
we are done.

(a.3) v = x2, x3, x4, xn−3, xn−2, or xn−1.
By symmetry we assume that v = xk for 2 ≤ k ≤ 4. If p(x1) ≥ 2,

then we can put a pebble at xk because dist(x1, xk) = 1. Otherwise
p(x1) ≤ 1 and then Σn

j=2p(xj) ≥ 2l+1 − 1. Since (2l+1 − 1)− (n− 1) =
(2l+1− 1)− (4l + 1) = 2l+1− 4l− 2 ≥ 2l−1 for l ≥ 4, there are 2l−2 pairs
on the subgraph x2 · · ·xn ≡ Pn−1

4. By Lemma 3, we can put a pebble
at xk by using 2l−2 pairs on the subgraph x2 · · ·xn with 2d

(n−1)−1
4

e = l.
Case (b) r=1.
Suppose that for all n′ with n′ < n and n′ − 2 ≡ 1 (mod 4) we

have f(Pn′
4) = 2d

n′−1
4
e + 1. We will show that f(Pn

4) = 2d
n−1

4
e + 1. Let

n = 4l+3 for some l ≥ 4. Then dn−1
4 e = l+1. Place 2d

n−1
4
e+1(= 2l+1+1)

pebbles at the vertices of Pn
4 = x1x2 · · ·xn. Let v be the target vertex.

Then there are the following three possible cases (b.1), (b.2) and (b.3).
(b.1) v 6= x1, · · · , x4, xn−3, · · · , xn−1 or xn.
This case can be proved by the same way to (a.1).
(b.2) v = x1 or xn.
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By symmetry we assume that v = x1. Suppose that Σ4
i=2p(xi) = 0.

Then there are (2l+1 + 1) pebbles on the subgraph x5 · · ·xn which is
isomorphic to Pn−4

4. Since (2l+1+1)−(n−4) = (2l+1+1)−(4l−1) ≥ 2l

for l ≥ 4, there are 2l−1 pairs on the subgraph x5 · · ·xn and so we can put
a pebble at x5 using these 2l−1 pairs on that subgraph with d (n−4)−1

4 e = l
by Lemma 3. And we put one more pebble at x5 using the remaining
(2l + 1) pebbles on the subgraph x5 · · ·xn ≡ Pn−4

4 by induction. Since
dist(x1, x5) = 1, we can put a pebble at x1.

(b.3) v = x2, x3, x4, xn−2, xn−1, or xn.
By symmetry we assume that v = xk for 2 ≤ k ≤ 4. If p(x1) ≥ 2,

then we can put a pebble at xk because of dist(x1, xk) = 1. Otherwise
p(x1) ≤ 1. Then there are at least 2l+1 pebbles on the subgraph x2 · · ·xn

which is isomorphic to Pn−1
4. Then by Case (a) we can put a pebble at

xk.
Case (c) r = 2.
Suppose that for all n′ with n′ < n and n′ − 2 ≡ 2 (mod 4) we

have f(Pn′
4) = 2d

n′−1
4
e + 2. We will show that f(Pn

4) = 2d
n−1

4
e + 2. Let

n = 4l+4 for some l ≥ 4. Then dn−1
4 e = l+1. Place 2d

n−1
4
e+2(= 2l+1+2)

pebbles at the vertices of Pn
4 = x1x2 · · ·xn. Let v be the target vertex.

Then there are the following three possible cases (c.1), (c.2) and (c.3).
(c.1) v 6= x1, · · · , x4, xn−3, · · · , xn−1 or xn.
This case can be proved by the same way to (a.1)
(c.2) v = x1 or xn.
By symmetry we assume that v = x1. If Σ4

i=2p(xi) = 0, then there
are (2l+1 + 2) pebbles on the subgraph x5 · · ·xn which is isomorphic to
Pn−4

4. Since (2l+1 + 2) − (n − 4) ≥ 2l for l ≥ 4, there are 2l−1 pairs
on the subgraph x5 · · ·xn and so we can put a pebble at x5 using these
2l−1 pairs on that subgraph with d (n−4)−1

4 e = l by Lemma 3. And we
put one more pebble at x5 using the remaining (2l + 2) pebbles on the
subgraph x5 · · ·xn ≡ Pn−4

4 by induction. Since dist(x1, x5) = 1, we can
put a pebble at x1.

(c.3) v = x2, x3, x4, xn−3, xn−2, or xn−1.
By symmetry we assume that v = xk for 2 ≤ k ≤ 4. If Σ3

j=1p(xj) ≥ 4,
then we are done. Otherwise Σ3

j=1p(xj) ≤ 3 and Σn
j=5p(xj) ≥ (2l+1 +

2) − 3(= 2l+1 − 1). Since d (2l+1−1)−(n−4)
2 e ≥ 2l for l ≥ 4, there are

2l−1 pairs on the subgraph x5 · · ·xn ≡ Pn−4
4 with d (n−4)−1

4 e = l and so
we can put a pebble at x5 using these 2l−1 pairs on that subgraph by
Lemma 3. And we can put one more pebble at x5 using the remaining
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(2l + 2) pebbles on the subgraph x5 · · ·xn ≡ Pn−4
4 by induction. Since

dist(xk, x5) = 1 for 2 ≤ k ≤ 4, we are done.
Case (d) r = 3.
The proof is similar to Case(c).

3. The exponents of Paths

Using Theorem 6 we can get the following Theorem 7.

Theorem 7.

e(Pn) =





2 if n ≤ 6
3 if 7 ≤ n ≤ 10
4 if 11 ≤ n ≤ 13
5 if 14 ≤ n ≤ 21

For 2 ≤ k ≤ n, consider the set

E = {k | 2d
n−1

k
e + r ≤ n where 0 ≤ r ≤ k − 1

and n− 2 ≡ r (mod k)}

Conjecture. e(Pn) = minE.

References

1. F.R.K.Chung, Pebbling in hypercubes, SIAM J. Disc. Math. Vol.2, No.
4(1989), pp 467-472.

2. D. Duffus and I. Rival, Graphs orientalbe as distributive lattices, Proc. Amer.
Math. Soc. 88(1983), pp 197-200.

3. P. Lemke and D. Kleitman, An additional theorem on the intergers modulo n,
J. Number Theory 31(1989), pp 335-345.

4. D. Moews, Pebbling graphs, J. of combinatorial Theory(Series B) 55(1992),
pp 224-252.

5. H.S.Snevily and J. Foster. The 2-pebbling property and a Conjecture of Gra-
ham’s, preprint.

6. L. Pachter, H.S.Snevily and B. Voxman, On pebbling graphs, Congr Number,
107(1995), pp 65-80.

7. Ju Young Kim, Pebbling exponents of graphs, J. of Natural Sciences In Catholic
Univ. of Daegu, Vol.2, No. 1(2004), pp 1-7.



776 Ju Young Kim and Sun Ah Kim

Department of Mathematics,
Catholic University of Daefu,
Gyeongsan, Gyeongbuk, 713-702, Korea
E-mail : jykim@cu.ac.kr

Department of Mathematics,
Chosun University,
Kwangju, 501-759, S.Korea.
E-mail : sakim@mail.chosun.ac.kr


