PEBBLING EXPONENTS OF PATHS

Ju Young Kim and Sun Ah Kim

Abstract

A pebbling move on a connected graph G is taking two pebbles off of one vertex and placing one of them on an adjacent vertex. For a connected graph $G, G^{p}(p>1)$ is the graph obtained from G by adding the edges (u, v) to G whenever $2 \leq \operatorname{dist}(u, v) \leq p$ in G. And the pebbling exponent of a graph G to be the least power of p such that the pebbling number of G^{p} is equal to the number of vertices of G. We compute the pebbling number of fourth power of paths so that the pebbling exponents of some paths are calculated.

I. Introduction

Pebbling in graphs was first considered by Chung[1]. Consider a connected graph with a fixed number of pebbles distributed on its vertices. A pebbling move consists of removing two pebbles from one vertex u and then placing one pebble at an adjacent vertex v. We say that we can pebble to a vertex v, the target vertex, if we can apply pebbling moves repeatedly so that it is possible to reach a configuration with at least one pebble at v. The pebbling number of a vertex v for a graph G, denoted by $f(G, v)$, is the smallest integer m which guarantees that any starting pebble configuration with m pebbles allows pebbling to v. And the pebbling number of G, denoted by $f(G)$, as the maximum of $f(G, v)$, over all vertices v.

A graph G is called demonic if $f(G)$ is equal to the number of its vertices. If one pebble is placed on each vertex other than the vertex v, then no pebble can be moved to v. Also, if w is at distance d from v, and $2^{d}-1$ pebbles are placed on w, then no pebble can be moved to v. So it is clear [1] that $f(G) \geq \max \left\{|V(G)|, 2^{D}\right\}$, where $|V(G)|$ is the number of the vertices of G and D is the diameter of G. Let $G=(V(G), E(G))$ be a connected graph. Then $G^{p}(p>1)$ (the p th power of G) is the graph obtained from G by adding the edges (u, v) to G whenever $2 \leq \operatorname{dist}(u, v) \leq p$ in G. Hence $G^{p}=(V(G), E(G) \cup F(G))$

Received November 19, 2010. Accepted December 11, 2010.
Key words and phrases: exponent, path, pebbling.
where $F(G)=\{(u, v): 2 \leq \operatorname{dist}(u, v) \leq p$ in $G\}$. If $p=1, G^{1}=G$. In [5], they proved $f\left(P_{2 k+r}{ }^{2}\right)=2 k+r$ where $o \leq r \leq 1$. Let $|V(G)|=n$. We know that if p is large enough (i.e., $p \geq n-1$) then $G^{p}=K_{n}$.

In [6], the pebbling exponent of a graph G (denoted by $e(G))$ is defined to be the least power of p such that $f\left(G^{p}\right)=|V(G)|$.

In section 2, we calculate the pebbling number of the fourth power of paths. Using the results in section 2 , we give the pebbling exponent of some paths in section 3 .

2. The pebbling number of fourth power of P_{n}

In [6], $f\left(P_{n}{ }^{2}\right)$ was calculated but the proof is too long. So that result was reproved by more simple method in [7]. It is known that the pebbling number $f\left(P_{n}\right)$ of the path P_{n} with n vertices is $2^{n-1}[1] . p(v)$ will denote the number of pebbles at vertex v.

In [7], the following two lemmas were used to calculate $f\left(P_{n}{ }^{2}\right)$ and $f\left(P_{n}{ }^{3}\right)$.

Lemma 1. [7] Let $P_{n}{ }^{2}=x_{1} x_{2} \cdots x_{n-1} x_{n}$ with $n \geq 7$. If $p(x)$ is even for each vertex x of the graph $P_{n}{ }^{2}$, then $2^{\left\lceil\frac{n-1}{2}\right\rceil}$ pebbles are sufficient to pebble x_{1} or x_{n}.

Lemma 2. [7] Let $P_{n}{ }^{3}=x_{1} \cdots x_{n}$ with $n \geq 8$. If $p(x)$ is even for each vertex x of P_{n}^{3}, then $2^{\left\lceil\frac{n-1}{3}\right\rceil}$ pebbles are sufficient to pebble x_{1} or x_{n}.

Similarly we can get the following lemma 3.
Lemma 3. Let $P_{n}{ }^{k}=x_{1} \cdots x_{n}$ with $n \geq 2 k \geq 8$. If $p\left(x_{i}\right)$ is even for each vertex x_{i} of $P_{n}{ }^{k}$, then $2^{\left\lceil\frac{n-1}{k}\right\rceil}$ pebbles are sufficient to pebble x_{1} or x_{n}.

Proof. Let $P_{n}{ }^{k}=x_{1} x_{2} \cdots x_{n}$ with $8 \leq 2 k \leq n, p\left(x_{i}\right)$ be even for x_{i}. Place $2^{\left\lceil\frac{n-1}{k}\right\rceil}$ pebbles on $P_{n}{ }^{k}$. By symmetry, we assume that $v=x_{1}$. Let $p\left(x_{1}\right)=0$. If $\left\lceil\frac{n-1}{k}\right\rceil=t$, we can write $P_{n}{ }^{k}$ as $P_{n}{ }^{k}=$ $x_{0 k+1} x_{0 k+2} \cdots x_{1 k} x_{1 k+1} \cdots x_{1 k+k} x_{2 k+1} \cdots x_{(t-1) k} x_{(t-1) k+1} \cdots x_{n}$ where $(t-$ 1) $k+1<n \leq t k+1$. By moving as many pebbles as possible from each $x_{j k+r}(2 \leq r \leq k+1)$ to $x_{j k+1}$ for $j=0,1, \cdots,(t-1)$, there can be at least 2^{t-1} pebbles at the vertices $x_{0 k+1} x_{1 k} \cdots x_{(t-1) k+1}$. Since $x_{0 k+1} x_{1 k+1} \cdots x_{(t-1) k+1}$ is isomorphic to P_{t} and $f\left(P_{t}\right)=2^{t-1}$, we can put a pebble at x_{1}.

Theorem 4. [6] $f\left(P_{2 k+r}{ }^{2}\right)=2^{k}+r$ when $0 \leq r \leq 1$.

Theorem 5. [7] $f\left(P_{n}{ }^{3}\right)=n$ if $1 \leq n \leq 7$. For $n \geq 8$,

$$
f\left(P_{n}^{3}\right)=\left\{\begin{array}{rlll}
2^{\left\lfloor\frac{n}{3}\right\rfloor}+1 & \text { if } & n \equiv 0 & (\bmod 3) \\
2^{\left\lfloor\frac{n}{3}\right\rfloor}+2 & \text { if } & n \equiv 1 & (\bmod 3) \\
2^{\left\lfloor\frac{n}{3}\right\rfloor+1} & \text { if } & n \equiv 2 & (\bmod 3)
\end{array}\right.
$$

Above two theorems can be restated as followings.
Theorem 4 $4^{\prime} . f\left(P_{n}{ }^{2}\right)=2^{\left\lceil\frac{n-1}{2}\right\rceil}+r$ when $0 \leq r \leq 1$
Theorem 5'. $f\left(P_{n}{ }^{3}\right)=2^{\left\lceil\frac{n-1}{3}\right\rceil}+r$ when $0 \leq r \leq 2$,

$$
n \geq 8 \quad \text { and } \quad n-2 \equiv r(\bmod 3)
$$

First, we note that $f\left(P_{n}{ }^{4}\right)=n$ for $1 \leq n \leq 13$. The reason for that is as follows. We proceed by induction on n. Clearly, the result is correct if $1 \leq n \leq 5$. Suppose that for all n^{\prime} with $5 \leq n^{\prime}<n \leq 13$ we have $f\left(P_{n^{\prime}}{ }^{4}\right)=n^{\prime}$. We will show that $f\left(P_{n}{ }^{4}\right)=n$. Place n pebbles at the vertices of $P_{n}{ }^{4}=x_{1} x_{2} \cdots x_{n}$ (the edges between x_{i} and x_{i+4} are implied for $(1 \leq i \leq 9)$ and assume first that $v \neq x_{1}$ or x_{n}. Let $v=x_{i}$ with $2 \leq i \leq n-1$. We see that if the subgraph $x_{1} \cdots x_{i} \equiv P_{i}{ }^{4}$ contains at least i pebbles and so we are done by induction. Otherwise the subgraph $x_{i} \cdots x_{n} \equiv P_{n-i-1}{ }^{4}$ contains at least $(n-i-1)$ pebbles and so we are done by induction. Therefore, we may assume that $v=x_{1}$ or x_{n}. By symmetry, we may assume that $v=x_{1}$. Suppose that $\sum_{i=2}^{5} p\left(x_{i}\right) \geq 1$. Let $p\left(x_{i}\right) \geq 1$ for some $2 \leq i \leq 5$. Then we can put one more pebble at x_{i} by using the remaining ($n-1$) pebbles on the subgraph $x_{2} \cdots x_{n} \equiv P_{n-1}{ }^{4}$ by induction. Since $\operatorname{dist}\left(x_{1}, x_{i}\right)=1$, we are done by moving a pebble at x_{1} from x_{i}. Otherwise $\sum_{i=2}^{5} p\left(x_{i}\right)=0$. Then $\sum_{i=6}^{n} p\left(x_{i}\right)=n$. For $6 \leq n \leq 9$ there are at least two pairs on the subgraph $x_{6} \cdots x_{n}$. Using these two pairs on that subgraph we can put two pebbles at x_{5} and so we are done because $\operatorname{dist}\left(x_{1}, x_{5}\right)=1$. For $10 \leq n \leq 13$ the subgraph $x_{6} \cdots x_{n}$ contains at least 4 pairs which are used to put two pebbles at x_{5}. And we are done.

Next, we show that $f\left(P_{14}{ }^{4}\right)=2^{4}, f\left(P_{15}{ }^{4}\right)=2^{4}+1, f\left(P_{16}{ }^{4}\right)=2^{4}+2$ and $f\left(P_{17}{ }^{4}\right)=2^{4}+3$.
(a) We show that $f\left(P_{14}{ }^{4}\right)=2^{4}$.

First, we will show that $f\left(P_{14}{ }^{4}\right) \geq 2^{4}$. Let $P_{14}{ }^{4}=x_{1} x_{2} \cdots x_{14}$ (the edges between x_{i} and x_{i+4} are implied for $1 \leq i \leq 10$) and place $\left(2^{4}-1\right)$ pebbles at x_{14}. Then no pebble can be moved to x_{1} because $\operatorname{dist}\left(x_{1}, x_{14}\right)=4$, therefore $f\left(P_{14}{ }^{4}\right) \geq 2^{4}$. Place 2^{4} pebbles at
the vertices of $P_{14}{ }^{4}=x_{1} x_{2} \cdots x_{14}$. By symmetry, we may assume that our target vertex is $v=x_{1}, x_{2}, \cdots, x_{8}$, or x_{9}. If $\Sigma_{i=1}^{9} p\left(x_{i}\right) \geq 9$, then we are done because the subgraph $x_{1} \cdots x_{9}$ is isomorphic to $P_{9}{ }^{4}$ and $f\left(P_{9}{ }^{4}\right)=9$. If $\Sigma_{i=1}^{9} p\left(x_{i}\right)=8$, then $\sum_{j=10}^{14} p\left(x_{j}\right)=8$. By moving as many pebbles as possible from $x_{10}, x_{11}, \cdots, x_{13}$ or x_{14} to x_{9}, we see that the subgraph $x_{1} \cdots x_{9} \equiv P_{9}{ }^{4}$ contains at least 9 pebbles. So we are done. If $\Sigma_{i=1}^{9} p\left(x_{i}\right) \leq 7$, then $\Sigma_{j=10}^{14} p\left(x_{j}\right) \geq 9$ and there are at least 4 pairs on the subgraph $x_{9} \cdots x_{14} \equiv P_{6}{ }^{4}$. By Lemma 3, We can put 4 pebbles at x_{9} by moving 4 pairs on the subgraph $x_{9} \cdots x_{14} \equiv P_{6}{ }^{4}$ to x_{9}. So we are done because $\operatorname{dist}\left(x_{k}, x_{9}\right) \leq 2$ for $1 \leq k \leq 9$.
(b) We show that $f\left(P_{15}{ }^{4}\right)=2^{4}+1$.

First, we will show that $f\left(P_{15}{ }^{4}\right) \geq 2^{4}+1$. Let $P_{15}{ }^{4}=x_{1} x_{2} \cdots x_{15}$ (the edges between x_{i} and x_{i+4} are implied for $1 \leq i \leq 11$) and place ($2^{4}-1$) pebbles at x_{15} and one pebble at x_{14}. Then no pebble can be moved to x_{1}. Place $\left(2^{4}+1\right)$ pebbles at the vertices of $P_{15}{ }^{4}=x_{1} x_{2} \cdots x_{15}$. By symmetry, we may assume that our target vertex is $v=x_{1}, x_{2}, \cdots, x_{8}$, or x_{9}. If $\Sigma_{i=1}^{9} p\left(x_{i}\right) \geq 9$, then we are done because the subgraph $x_{1} \cdots x_{9}$ is isomorphic to $P_{9}{ }^{4}$ and $f\left(P_{9}{ }^{4}\right)=9$. If $\Sigma_{i=1}^{9} p\left(x_{i}\right)=8$, then $\Sigma_{j=1}^{15} p\left(x_{j}\right)=9$. By moving as many pebbles as possible from x_{10}, \cdots, x_{14} or x_{15} to x_{9}, we see that the subgraph $x_{1} \cdots x_{9} \equiv P_{9}{ }^{4}$ contains at least 9 pebbles and we are done. If $\Sigma_{i=1}^{9} p\left(x_{i}\right) \leq 7$, then $\Sigma_{j=10}^{15} p\left(x_{j}\right) \geq 10$ and there are at least 4 pairs on the subgraph $x_{9} \cdots x_{15} \equiv P_{7}{ }^{4}$. By Lemma 3, we can put 4 pebbles at x_{9} by moving 4 pairs on the subgraph $x_{9} \cdots x_{15} \equiv P_{7}{ }^{4}$. So we are done because $\operatorname{dist}\left(x_{k}, x_{9}\right) \leq 2$ for $1 \leq k \leq 9$.
(c) The proof of $f\left(P_{16}{ }^{4}\right)=2^{4}+2$ or $f\left(P_{17}{ }^{4}\right)=2^{4}+3$ are similar to those of $f\left(P_{14}{ }^{4}\right)=2^{4}$ or $f\left(P_{15}{ }^{4}\right)=2^{4}+1$.

Theorem 6. For $n \geq 14, f\left(P_{n}{ }^{4}\right)=2^{\left\lceil\frac{n-1}{4}\right\rceil}+r$ where $0 \leq r \leq 3$ and $n-2 \equiv r(\bmod 4)$.

Proof. First, we will show that $f\left(P_{n}{ }^{4}\right) \geq 2^{\left\lceil\frac{n-1}{4}\right\rceil}+3$ for $n-2 \equiv 3$ $(\bmod 4)$. Let $P_{n}{ }^{4}=x_{1} x_{2} \cdots x_{n}$ (the edges between x_{i} and x_{i+4} are implied for $1 \leq i \leq n-4)$ and place ($2^{\left[\frac{n-1}{4}\right\rceil}-1$) pebbles at x_{n} and one pebble at each x_{j} with $j=n-3, n-2$, and $n-1$. It is easy to see that a pebble can not be moved to x_{1}, therefore $f\left(P_{n}{ }^{4}\right) \geq 2^{\left[\frac{n-1}{4}\right\rceil}+3$.

Since the diameter of $P_{n}{ }^{4}$ is $\left\lceil\frac{n-1}{4}\right\rceil$ for $n-2 \equiv 0(\bmod 4)$, we have $f\left(P_{n}{ }^{4}\right) \geq 2^{\left[\frac{n-1}{4}\right\rceil}$.

Similarly, $f\left(P_{n}{ }^{4}\right) \geq 2^{\left\lceil\frac{n-1}{4}\right\rceil}+r$ for $n-2 \equiv r(\bmod 4), r=1$ or 2 .

We proceed by induction on n. We have already showed that our theorem is correct if $n=14,15,16$, or 17 .

Case (a) $r=0$.
Suppose that for all n^{\prime} with $n^{\prime}<n$ and $n^{\prime}-2 \equiv 0(\bmod 4)$ we have $\left.f\left(P_{n^{\prime}}{ }^{4}\right)=2^{\sum^{n^{\prime}-1} 4}\right]$. We will show that $f\left(P_{n}{ }^{4}\right)=2^{\left\lceil\frac{n-1}{4}\right\rceil}$. Let $n=4 l+2$
 the vertices of $P_{n}{ }^{4}=x_{1} x_{2} \cdots x_{n}$. Let v be the target vertex. Then there are the following three possible cases (a.1), (a.2) and (a.3).
(a.1) $v \neq x_{1}, \cdots, x_{4}, x_{n-3}, \cdots, x_{n-1}$ or x_{n}.

Let P_{A} be the subgraph $x_{5} \cdots x_{n}$ and P_{B} be the subgraph $x_{1} \cdots x_{n-4}$. Then both P_{A} and P_{B} are isomorphic to $P_{n-4}{ }^{4}$. It is easy to see that P_{A} or P_{B} contains at least $2^{\left\lceil\frac{(n-4)-1}{4}\right\rceil}$ pebbles. By induction we are done.
(a.2) $v=x_{1}$ or x_{n}.

By symmetry we assume that $v=x_{1}$. Suppose that $\Sigma_{i=2}^{5} p\left(x_{i}\right)=0$. Then there are 2^{l+1} pebbles on the subgraph $x_{5} \cdots x_{n}$ which is isomorphic to $P_{n-4}{ }^{4}$. By induction we can put two pebbles at x_{5} using $2 \cdot 2^{l}$ pebbles on the subgraph $x_{5} \cdots x_{n}$. Because $\operatorname{dist}\left(x_{1}, x_{4}\right)=1$, we are done. Otherwise $\sum_{i=2}^{4} p\left(x_{i}\right) \geq 1$. Let $j=\min _{2 \leq i \leq 5}\left\{i \mid p\left(x_{i}\right) \geq 1\right\}$. For $p\left(x_{j}\right) \geq 2$, we are done. Let $p\left(x_{j}\right)=1$. Then there are 2^{l-1} pairs on the subgraph $x_{j} \cdots x_{n}$ because $\left\lceil\frac{\left(2^{l+1}-(n-j+1)\right.}{2}\right\rceil \geq 2^{l}=2 \cdot 2^{l-1}$. By using these 2^{l-1} pairs on that subgraph we can put one more pebble at x_{j} and we are done.
(a.3) $v=x_{2}, x_{3}, x_{4}, x_{n-3}, x_{n-2}$, or x_{n-1}.

By symmetry we assume that $v=x_{k}$ for $2 \leq k \leq 4$. If $p\left(x_{1}\right) \geq 2$, then we can put a pebble at x_{k} because $\operatorname{dist}\left(x_{1}, x_{k}\right)=1$. Otherwise $p\left(x_{1}\right) \leq 1$ and then $\sum_{j=2}^{n} p\left(x_{j}\right) \geq 2^{l+1}-1$. Since $\left(2^{l+1}-1\right)-(n-1)=$ $\left(2^{l+1}-1\right)-(4 l+1)=2^{l+1}-4 l-2 \geq 2^{l-1}$ for $l \geq 4$, there are 2^{l-2} pairs on the subgraph $x_{2} \cdots x_{n} \equiv P_{n-1}{ }^{4}$. By Lemma 3 , we can put a pebble at x_{k} by using 2^{l-2} pairs on the subgraph $x_{2} \cdots x_{n}$ with $2^{\left[\frac{(n-1)-1}{4}\right\rceil}=l$.

Case (b) $r=1$.
Suppose that for all n^{\prime} with $n^{\prime}<n$ and $n^{\prime}-2 \equiv 1(\bmod 4)$ we have $f\left(P_{n^{\prime}}{ }^{4}\right)=2^{\left\lceil\frac{n^{\prime}-1}{4}\right\rceil}+1$. We will show that $f\left(P_{n}{ }^{4}\right)=2^{\int^{\left.\frac{n-1}{4}\right\rceil}+1 \text {. Let }}$ $n=4 l+3$ for some $l \geq 4$. Then $\left\lceil\frac{n-1}{4}\right\rceil=l+1$. Place $2^{\left.2^{\frac{n-1}{4}}\right\rceil+1\left(=2^{l+1}+1\right) ~}$ pebbles at the vertices of $P_{n}{ }^{4}=x_{1} x_{2} \cdots x_{n}$. Let v be the target vertex. Then there are the following three possible cases (b.1), (b.2) and (b.3).
(b.1) $v \neq x_{1}, \cdots, x_{4}, x_{n-3}, \cdots, x_{n-1}$ or x_{n}.

This case can be proved by the same way to (a.1).
(b.2) $v=x_{1}$ or x_{n}.

By symmetry we assume that $v=x_{1}$. Suppose that $\Sigma_{i=2}^{4} p\left(x_{i}\right)=0$. Then there are $\left(2^{l+1}+1\right)$ pebbles on the subgraph $x_{5} \cdots x_{n}$ which is isomorphic to $P_{n-4}{ }^{4}$. Since $\left(2^{l+1}+1\right)-(n-4)=\left(2^{l+1}+1\right)-(4 l-1) \geq 2^{l}$ for $l \geq 4$, there are 2^{l-1} pairs on the subgraph $x_{5} \cdots x_{n}$ and so we can put a pebble at x_{5} using these 2^{l-1} pairs on that subgraph with $\left\lceil\frac{(n-4)-1}{4}\right\rceil=l$ by Lemma 3. And we put one more pebble at x_{5} using the remaining $\left(2^{l}+1\right)$ pebbles on the subgraph $x_{5} \cdots x_{n} \equiv P_{n-4}{ }^{4}$ by induction. Since $\operatorname{dist}\left(x_{1}, x_{5}\right)=1$, we can put a pebble at x_{1}.
(b.3) $v=x_{2}, x_{3}, x_{4}, x_{n-2}, x_{n-1}$, or x_{n}.

By symmetry we assume that $v=x_{k}$ for $2 \leq k \leq 4$. If $p\left(x_{1}\right) \geq 2$, then we can put a pebble at x_{k} because of $\operatorname{dist}\left(x_{1}, x_{k}\right)=1$. Otherwise $p\left(x_{1}\right) \leq 1$. Then there are at least 2^{l+1} pebbles on the subgraph $x_{2} \cdots x_{n}$ which is isomorphic to $P_{n-1}{ }^{4}$. Then by Case (a) we can put a pebble at x_{k}.

Case (c) $r=2$.
Suppose that for all n^{\prime} with $n^{\prime}<n$ and $n^{\prime}-2 \equiv 2(\bmod 4)$ we have $f\left(P_{n^{\prime}}{ }^{4}\right)=2^{\left\lceil\frac{n^{\prime}-1}{4}\right\rceil}+2$. We will show that $f\left(P_{n}{ }^{4}\right)=2^{\left[\frac{n-1}{4}\right\rceil}+2$. Let $n=4 l+4$ for some $l \geq 4$. Then $\left\lceil\frac{n-1}{4}\right\rceil=l+1$. Place $2^{\left.2 \frac{n-1}{4}\right\rceil}+2\left(=2^{l+1}+2\right)$ pebbles at the vertices of $P_{n}{ }^{4}=x_{1} x_{2} \cdots x_{n}$. Let v be the target vertex. Then there are the following three possible cases (c.1), (c.2) and (c.3).
(c.1) $v \neq x_{1}, \cdots, x_{4}, x_{n-3}, \cdots, x_{n-1}$ or x_{n}.

This case can be proved by the same way to (a.1)
(c.2) $v=x_{1}$ or x_{n}.

By symmetry we assume that $v=x_{1}$. If $\sum_{i=2}^{4} p\left(x_{i}\right)=0$, then there are $\left(2^{l+1}+2\right)$ pebbles on the subgraph $x_{5} \cdots x_{n}$ which is isomorphic to $P_{n-4}{ }^{4}$. Since $\left(2^{l+1}+2\right)-(n-4) \geq 2^{l}$ for $l \geq 4$, there are 2^{l-1} pairs on the subgraph $x_{5} \cdots x_{n}$ and so we can put a pebble at x_{5} using these 2^{l-1} pairs on that subgraph with $\left\lceil\frac{(n-4)-1}{4}\right\rceil=l$ by Lemma 3. And we put one more pebble at x_{5} using the remaining $\left(2^{l}+2\right)$ pebbles on the subgraph $x_{5} \cdots x_{n} \equiv P_{n-4}{ }^{4}$ by induction. Since $\operatorname{dist}\left(x_{1}, x_{5}\right)=1$, we can put a pebble at x_{1}.

$$
\text { (c.3) } v=x_{2}, x_{3}, x_{4}, x_{n-3}, x_{n-2} \text {, or } x_{n-1} \text {. }
$$

By symmetry we assume that $v=x_{k}$ for $2 \leq k \leq 4$. If $\Sigma_{j=1}^{3} p\left(x_{j}\right) \geq 4$, then we are done. Otherwise $\Sigma_{j=1}^{3} p\left(x_{j}\right) \leq 3$ and $\Sigma_{j=5}^{n} p\left(x_{j}\right) \geq\left(2^{l+1}+\right.$ 2) $-3\left(=2^{l+1}-1\right)$. Since $\left\lceil\frac{\left(2^{l+1}-1\right)-(n-4)}{2}\right\rceil \geq 2^{l}$ for $l \geq 4$, there are 2^{l-1} pairs on the subgraph $x_{5} \cdots x_{n} \equiv P_{n-4}{ }^{4}$ with $\left\lceil\frac{(n-4)-1}{4}\right\rceil=l$ and so we can put a pebble at x_{5} using these 2^{l-1} pairs on that subgraph by Lemma 3. And we can put one more pebble at x_{5} using the remaining
$\left(2^{l}+2\right)$ pebbles on the subgraph $x_{5} \cdots x_{n} \equiv P_{n-4}{ }^{4}$ by induction. Since $\operatorname{dist}\left(x_{k}, x_{5}\right)=1$ for $2 \leq k \leq 4$, we are done.

Case (d) $r=3$.
The proof is similar to Case(c).

3. The exponents of Paths

Using Theorem 6 we can get the following Theorem 7.

Theorem 7.

$$
e\left(P_{n}\right)=\left\{\begin{array}{lll}
2 & \text { if } & n \leq 6 \\
3 & \text { if } & 7 \leq n \leq 10 \\
4 & \text { if } & 11 \leq n \leq 13 \\
5 & \text { if } & 14 \leq n \leq 21
\end{array}\right.
$$

For $2 \leq k \leq n$, consider the set

$$
\begin{gathered}
E=\left\{k \left\lvert\, 2^{\left\lceil\frac{n-1}{k}\right\rceil}+r \leq n \quad\right. \text { where } \quad 0 \leq r \leq k-1\right. \\
\text { and } \quad n-2 \equiv r \quad(\bmod k)\}
\end{gathered}
$$

Conjecture. $e\left(P_{n}\right)=\min E$.

References

1. F.R.K.Chung, Pebbling in hypercubes, SIAM J. Disc. Math. Vol.2, No. 4(1989), pp 467-472.
2. D. Duffus and I. Rival, Graphs orientalbe as distributive lattices, Proc. Amer. Math. Soc. 88(1983), pp 197-200.
3. P. Lemke and D. Kleitman, An additional theorem on the intergers modulo n, J. Number Theory 31(1989), pp 335-345.
4. D. Moews, Pebbling graphs, J. of combinatorial Theory(Series B) 55(1992), pp 224-252.
5. H.S.Snevily and J. Foster. The 2-pebbling property and a Conjecture of Graham's, preprint.
6. L. Pachter, H.S.Snevily and B. Voxman, On pebbling graphs, Congr Number, 107(1995), pp 65-80.
7. Ju Young Kim, Pebbling exponents of graphs, J. of Natural Sciences In Catholic Univ. of Daegu, Vol.2, No. 1(2004), pp 1-7.

Department of Mathematics,
Catholic University of Daefu,
Gyeongsan, Gyeongbuk, 713-702, Korea
E-mail: jykim@cu.ac.kr
Department of Mathematics,
Chosun University,
Kwangju, 501-759, S.Korea.
E-mail: sakim@mail.chosun.ac.kr

