The bandwidth minimization problem (BMP) has been classified as NP-complete because the polynomial time algorithm to find the optimal solution has been unknown yet. This paper suggests polynomial time heuristic algorithm is to find the solution of bandwidth minimization problem. To find the minimum bandwidth ${\phi}^*=_{min}{\phi}(G)$, ${\phi}(G)=_{max}\{{\mid}f(v_i)-f(v_j):v_i,v_j{\in}E\}$ for given graph G=(V,E), m=|V|,n=|E|, the proposed algorithm sets the maximum degree vertex $v_i$ in graph G into global central point (GCP), and labels the median value ${\lceil}m+1/2{\rceil}$ between [1,m] range. The graph G is partitioned into subgroup, the maximum degree vertex in each subgroup is set to local central point (LCP), and we adjust the label of LCP per each subgroup as possible as minimum distance from GCP. The proposed algorithm requires O(mn) time complexity for label to all of vertices. For various twelve graph, the proposed algorithm can be obtains the same result as known optimal solution. For one graph, the proposed algorithm can be improve on known solution.
준지도 학습은 기계 학습의 한 분야로서, 레이블된 데이터와 레이블되지 않은 데이터 모두를 사용하여 모델을 학습함으로써 지도 학습에 비해 예측 정확도를 높일 수 있다. 최근 각광받고 있는 그래프 기반 준지도 학습은 입력 데이터를 그래프의 형태로 변환하는 그래프 구축 단계와 이를 사용하여 레이블되지 않은 데이터의 레이블을 예측하는 레이블 추론 단계로 나뉜다. 이 추론은 준지도 학습에서의 평활도 가정을 기본으로 한다. 본 연구에서는 추가로 각 꼭지점 중요도를 결합함으로써 개선된 레이블 추론 알고리즘을 제안한다. 이와 함께 알고리즘의 수렴성을 증명하고, 또한 실험을 통해 알고리즘의 우수성을 검증하였다.
음함수 표면을 이용한 모델링 방법은 부드러운 곡면을 나타내기에 적합하며 날카로운 부분을 표현하기 위해서는 CSG 연산을 적용한다. 기존의 방식을 이용해서 얻은 매쉬에서는 흔히 음함수의 표면과 상당한 오차를 가지는 매쉬 첨점(vertex)을 얻거나 겹쳐지는 삼각형 또는 날카로운 부분의 표현이 안 되는 점 등의 문제가 나타난다. 본 논문에서는 타원체의 특성을 이용해서 타원체 기반 음함수 표면을 정확하게 샘플링하고 동시에 날카로운 부분을 효과적으로 표현할 수 있는 매쉬를 얻기 위한 폴리곤화 방법을 제안한다. 이러한 목표를 위해 타원체의 투사 특성과 표면 법선 벡터의 연속 특성을 이용해서 음함수 표면 위에 정확하게 위치하는 첨점(vertex)의 위치를 찾고 날카로운 부분을 효과적으로 표현하기 위해 점진적인 방법으로 정확한 첨점(vertex) 위치를 찾는 방법을 제안한다. 지금까지 약점으로 지적되어 왔던 음함수 표면 모델링의 시각화 절차를 이 방법을 통해 개선함으로써 음함수 표면 모델링 기법이 제공하는 다른 장점들을 적극 활용할 수 있을 것으로 기대한다.
본 논문에서는 재구성가능한 메쉬에서 유향 사이클 그래프의 각 정점별 이웃 정보만 가지고 유향 사이클을 구성하는 정점들의 순서를 찾는 문제를 고려한다. 이 문제는 순차 알고리즘으로는 선형 시간에 해결되는 문제이지만 선형 시간보다 낮은 차수의 병렬 알고리즘을 고안하는 것은 어려운 문제이다. 모든 종류의 다각형은 유향 사이클 그래프에 해당하므로, 이 문제에 대한 해는 다각형의 정점별 이웃 정보로부터 다각형을 구성해야 하는 문제의 해결에 활용될 수 있다. 본 논문에서는 정점의 수가 n인 유향 사이클 그래프의 정점 순서를 구하는 문제를 $n{\times}n^2$ 크기의 재구성가능한 메쉬에서 상수 시간에 해결하는 병렬 알고리즘을 제시한다.
일반적으로 3차원 물체의 인식이나 모델링을 하기 위해서는 물체의 모양을 표현 하는 방법이 필요하다. 실루엣이미지와 같은 2차원인 경우 물체의 모양을 나타내는 경계선상의 정점 추출은 2차원 곡률함수를 이용하지만, 3차원의 경우는 물체표면의 곡률을 계산할 수 있는 3차원 곡률함수가 없기 때문에 어려운 점이 있다. 따라서 본 논문에서는 2차원 곡률원리와 최소자승법을 이용하여 근사화된 3차원 물체의 표면 곡 률값과 장점을 효과적으로 구할 수 있는 새로운 방법을 제시하였다.
이동 통신이나 인터넷 채널과 같이 전송용량이 제한적인 환경에서 3차원 물체에 그래픽의 사용이 빈번해 지면서 3차원 모델을 단순화시켜야할 필요성이 증대되고 있다. 삼각형으로 표현된 3차원 물체의 표면을 단순화시키는 경우, 3차원 공간에서의 꼭지점들 중에서 제일 가까운 점 두 개를 선택하여 반복적으로 데이터를 줄여가는 vertex contraction 방법이 많이 사용되고 있다. 이때 단순화 된 점의 위치를 결정하기 위하여 단순화시 발생하는 오차를 계산하여야 한다. 본 논문에서는 새로운 오차 계산법을 제시하여 원 모델과의 오차가 작게 단순화하는 방법을 제안하고, 이를 3차원 모델 데이터에 적용하여 실제 개선결과를 확인한다.
The vertex set of a digraph D is denoted by V (D). A c-partite tournament is an orientation of a complete c-partite graph. A digraph D is called cycle complementary if there exist two vertex disjoint cycles $C_1$ and $C_2$ such that V(D) = $V(C_1)\;{\cup}\;V(C_2)$, and a multipartite tournament D is called weakly cycle complementary if there exist two vertex disjoint cycles $C_1$ and $C_2$ such that $V(C_1)\;{\cup}\;V(C_2)$ contains vertices of all partite sets of D. The problem of complementary cycles in 2-connected tournaments was completely solved by Reid [4] in 1985 and Z. Song [5] in 1993. They proved that every 2-connected tournament T on at least 8 vertices has complementary cycles of length t and ${\mid}V(T)\mid$ - t for all $3\;{\leq}\;t\;{\leq}\;{\mid}V(T)\mid/2$. Recently, Volkmann [8] proved that each regular multipartite tournament D of order ${\mid}V(D)\mid\;\geq\;8$ is cycle complementary. In this article, we analyze multipartite tournaments that are weakly cycle complementary. Especially, we will characterize all 3-connected c-partite tournaments with $c\;\geq\;3$ that are weakly cycle complementary.
본 논문은 한글 문자인식을 위하여 중첩형상데이타에 의한 한글 패턴의 굴곡 특징점과 정점검출에 관하여 논한 것이다. 입력된 2진 문자패턴을 거리변환법에 의한 중첩데이타로 변환하고, 데이터의 특성분석에 의한 변환값의 새로운 파일로 구성하였다. 이 두 데이터 파일로 한글 인식에 유용한 정점들을 검출하는 알고리즘을 제안하였다. 이 알고리즘에서는 오인식의 원인이 되는 돌기부분의 제거, 자소 접촉 부분의 분리, 굴곡 특징 변환값에 따른 코드를 부여하도록 하였따. 여기서의 출력은 한글 문자인식에 활용될 수 있는 형태로 하였다.
선체 형상을 표현하기 위하여 Bi-Cubic B-spline이 가장 널리 사용되고 있다. B-spline곡선 곡면 정의에 있어서 입력 데이터가 불규칙하거나, 주어진 데이터의 갯수가 많은 경우, 또는 형상이 복잡한 경우에 주어진 형상의 부드러운 곡선 곡면(Smooth curves or surfaces)을 재현할 수 있는 역행렬을 구하기 어렵다. 이러한 문제점을 극복하기 위해 새로운 버텍스 산출법(ISE 방법: Image Surface Expansion Method)을 제시한다. 곡선정의를 이용하여 ISE방법을 검증하였고, 수렴성을 확인하였다. 또한 선체형상을 정의하였으며, Open Uniform B-spline으로 형성된 곡면과 비교하였고, ISE방법의 신뢰도를 검증하였다.
연결 그래프의 꼭지점에 자갈이 분포되어 있다고 하자. 한 꼭지점에서 두 개의 자갈을 취하여 한 개의 자갈만을 인접한 꼭지점에 보내는 이동을 할 때, 자갈이 분포될 수 있는 모든 경우에서 임의의 꼭지점에 한 개의 자갈을 보내기 위해 필요한 최소의 자갈의 수를 그 그래프의 pebbling number 라고 한다. 이 논문에서 Petersen Graph의 pebbling 수를 계산하였고 complete bipartite 그래프 $K_{m,n}$과 꼭지점의 수 h가 4개 이상인 complete 그래프의 categorical product 의 pebbling number가 (m+n)h 이 됨을 보였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.