• Title/Summary/Keyword: Vent valve

Search Result 37, Processing Time 0.021 seconds

The Development of an Automation Jig for the Vent Grille Assembly Process (벤트 그릴 조립공정 자동화를 위한 자동화 지그 개발)

  • 김진우;한창수
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.77-82
    • /
    • 2000
  • In this study, an automation assembly jig for the automation assembly process for the ventilation grille that is used in the interior of a car is developed. As the method that can do the automation assembly for the ventilation grille, a simple jig and air cylinder have been applied. And a solenoid valve, a filter regulator, and on-off switch have been used in controlling the system. Moreover, the timer is attached to the equipment so that a worker may control the assembly time, as fitting the quantity on demand of production. Actually with executing the assembly test productivity and performance of assembly have been verified. In case of the automation assembly work for a ventilation grille is compared to the manual work. The optimum working speed has been identified to make the process twice or three times better.

  • PDF

Analysis of Dynamic Characteristics and Performances of Vent-Relief Valve (산화제 벤트/릴리프 밸브의 동특성 해석 및 작동성능 분석)

  • Jang, Je-Sun;Koh, Hyeon-Seok;Han, Sang-Yeop;Lee, Kyung-Won
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.15 no.6
    • /
    • pp.70-77
    • /
    • 2011
  • A ventilation-relief valve performs as a safety-valve assembly for the liquid-propellant feeding system of space launch vehicle. This valve plays a role of relieving the vaporized propellants from propellant tanks during the filling and storing stages of propellants. Also it regulates to maintain the pressure of ullage volume of on-board propellant tanks within the safety-margin during the flight. The simulation model of ventilation-relief valve is designed with AMESim to predict and evaluate the dynamic characteristics and pneumatic behaviors of valve. To validate a valve simulation model, the simulation results of the opening and closing pressures and their operating durations of valve by AMESim analysis are compared with the results of mathematical methods. In addition, the results of internal flow simulation with FLUENT are utilized to improve the accuracy of valve-modeling. This study will serve as one of reference guides to enhance the developmental efficiency of ventilation-relief valves with the various operating conditionss, which shall be used in Korea Space Launch Vehicle-II.

A Study on Design of Diffuser Sliencer in Boiler (보일러용 디퓨저 소음기 설계에 관한 연구)

  • 남경훈;박실룡;이덕주;김재욱
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.271-278
    • /
    • 1997
  • The flow of steam through a safety valve vent pipe system in the boiler has been analyzed to provide a design basis of diffuser silencer for attenuating shock-shell and jet noise. Numerical analysis to estimate inner fluid of silencer and noise propagation outside silencer are performed. The distribution curve of fluid information to provide average values about inner fluid of silencer is presented by theoretical analysis.

  • PDF

Investigation of Ventilation Efficiency for the Natural Gas High Pressure Release in an Underground Valve Station (지하 공급관리소내 천연가스 고압분출시 환기효율성 검증)

  • Ha J. M.;Lee J. H.;Sung W. M.
    • Journal of the Korean Institute of Gas
    • /
    • v.6 no.1 s.17
    • /
    • pp.74-80
    • /
    • 2002
  • This study was carried out for the purpose of safety evaluation about the ventilation system (according to the structure of confined room, the position and size of vent window, the amount of blowing air, e.t.c.), which is equipped in one of KOGAS underground valve stations. Particularly, the effect of the fans placed in the upper region was focused in detail. Numerical simulation was conducted in order to predict the features of flow pattern and the diffusion of natural gas concentration. This work examined the ventilation system and resulted in proposing an optimal design of ventilation system.

  • PDF

Optimization of Vent Logic for Cascade Type Fuel Cell Module (캐스캐이드형 연료전지 모듈 벤트 로직 최적화)

  • Lim, Jongkoo;Park, Jongcheol;Kwon, Kiwook;Shin, Hyun Khil
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.87.2-87.2
    • /
    • 2011
  • Many type of fuel cell stacks have been developed to improve the efficiency of reactants usage. The cascade type fuel cell stack using dead end operation is able to attain above 99% usage of hydrogen and oxygen. It is sectionalized to several parts and the residual reactants which are used previous parts would be supplied again to next parts which have less number of cells in dead end operation stack. The oversupply of reactants which is usually 120%~150% of the theoretical amount to generate current for preventing the flooding effect could be provided to each part except the last one. The final section which is called monitoring cells is supposed to be supplied insufficient the fuel or oxidant that would have some accumulated inert gas from former parts. It makes some voltage drop in the part and the fresh reactants must be supplied to the part for recovering it by venting the residual gas. So the usage of fuel and oxidant is depend on the time and frequency of opening valves for venting of residual gas and it is important to optimize the vent logic for achieving higher usage of hydrogen and oxygen. In this research, many experiments are performed to find optimal condition by evaluating the effect of time and frequency under several power conditions using over 100kW class fuel cell module. And the characteristics of the monitoring cells are studied to know the proper cell voltage which decide the condition of opening the vent valve for stable performance of the cascade type fuel cell module.

  • PDF

The Performance Characteristics of Anti-Surge Devices for High Head Cooling Water Systems in 1,000 MW Thermal Power plants (고수두 1,000 MW 석탄화력발전소 냉각수계통 수격방지장치의 성능특성)

  • Kim, Keun-Pil;Yoo, Hoseon
    • Plant Journal
    • /
    • v.15 no.4
    • /
    • pp.36-42
    • /
    • 2019
  • In recent, according to the tightening of environment regulation policy, the height of the site of the power plant is increased and the length of the cooling water pipe is increased. This has a serious impact on the stability of the plant. This study analyzes the transient phenomenon using LIQT 7.2, an unsteady state one-dimensional analysis software, to secure the stability of 1,000 MW high-capacity coal-fired power plant cooling water system with high head. To prevent water hammer, The effects on performance characteristics were predicted by individual and combination application. The surge pressure of the cooling water which occurs when the pump was stopped without installing the anti-surge devices was the largest at the pump outlet side. The most effective and simple way to reduce surge pressure in these cooling water systems is to combine a vacuum breaker with a hydraulic non-return valve, which is an essential device for pump protection.

Vibration Related Branch Line Fatigue Failure (분기관 진동에 의한 피로파괴)

  • 전형식;박보용
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1990.10a
    • /
    • pp.113-124
    • /
    • 1990
  • Tap lines are small branch piping generally less than two inches in diameter. They typically branch off of header piping having a much larger diameter. An example of a common tap line is a 3/4 inch size high point vent or low point drain. Most tap lines have at least one valve near the header tap connection to provide isolation. Two valves are often required for double isolation. A light water reactor(LWR) nuclear power plant will have several hundred tap lines. These lines come in many sizes and shapes and serve numerous functions. A single process piping valve may have three different tap lines associated with it (figure 1). Table 1 delineates the different categories of tap lines. Vibration failures of tap lines are a common occurrence in all industrial plants including nuclear and fossil power plants. These types of failures constitute a significant percentage of all piping related failures. An unscheduled plant shutdown or outage resulting from the failure of a tap line decreases plant reliability and may have a detrimental effect on plant safety. Most tap line vibration failures can be avoided through the use of appropriate routing and support techniques. Standardized designs can be developed for use in a myriad of applications. These designs will not only minimize failures but will also reduce the necessary analysis and installation efforts.

  • PDF

An Analysis of the Loss of Residual Heat Removal System Event for Pressurized Water Reactor at Reduced Inventory Operation (가압경수로의 저수위 운전시 잔열제거계통 상실사고에 대한 분석)

  • Han, Kee-Soo;Song, Jin-Ho
    • Nuclear Engineering and Technology
    • /
    • v.27 no.5
    • /
    • pp.645-660
    • /
    • 1995
  • The loss of Residual Heat Removal System (RHRS) event during reduced inventory operation for the Korean Standard Nuclear Power Plants (KSNPPS) is simulated by RELAP5/MOD3 and RELAP5/MOD3.1 Tn cases are considered : Base case for an intact Reactor Coolant System (RCS) with no tent and a vent case for an open system. Comparative simulations of base case are peformed by RELAP5/MOD3 and RELAP5/MOD3. 1 computer codes. The results of too simulations are generally in good qualitative and quantitative agreement. However, since the results of RELAP5/MOD3 simulation reveals the deficiency of RELAP5/MOD3 wall heat model, the RELAP5/AOD3.1 computer code is used for the simulation of the vent case. The analysis result of base case show that two steam generators are insufficient to remove decay heat at one day after shutdown, where the RCS is closed. The RCS pressure increased continuously and reached the RCS temporary boundaries design pressure of 0.24 MPa around 4,000 seconds. In the vent case with a flow capacity equivalent to three times the capacity of Pressurizer Safety Valve (PSV), it is shown that the RCS Pressure does not reach 0.24 MPa and core uncovery does not occur until 10,000 seconds. The detailed discussions on the results of this study suggest the feasibility of RELAP5/AOD3.1 as an analysis tool for the simulation of the loss of RHRS event at reduced inventory operation. The results of this study also provide insight for the determination of proper vent capacity.

  • PDF

A Study on the Rupture Disk Design and Application at the Two Phase Flow by Runaway Reaction at Batch Reactor (회분식 반응기에서 반응폭주에 의한 2-Phase 흐름 파열판 설계 및 적용에 관한 연구)

  • Lee, Hyung-Sub;Yun, Hee-Chang
    • Journal of the Korean Institute of Gas
    • /
    • v.21 no.3
    • /
    • pp.1-8
    • /
    • 2017
  • The purpose of this study is to suggest the rupture disk design(size) and application at the two phase(gas-liquid) flow by runaway reaction at batch reactor. The definition of runaway reaction is abnormally exothermic reaction by the uncontrolled cooling water or deviated operating condition. As a result, the temperature of reactor is rapidly increasing. The causes of runaway reaction are either self-heating reaction or sleeper reaction. General methods of rupture disk size or safety valve are not suitable in the runaway reaction, because of temperature and pressure increasing rapidly in the reactor and the phases of relieving fluid is 2-phase flow. This study case of the reactor incident, the depressurization system such as safety valve and vent installed, however, the system did not relieved the pressure of reactor suitably. The orifice size of the safety valve were designed too small because the size had not been considered the phenomena and character of reaction. The batch reactor design should be considered by referring to the possibility of runaway reaction proposed in this study and the size of rupture disk design method considering 2-phase flow.

Development of a Tool for Predicting the Occurrence Time of BLEVE in Small LPG Storage Tanks (LPG소형저장탱크 BLEVE 발생 시점 예측 툴 개발)

  • Chae, Chung Keun;Lee, Jae Hun;Chae, Seung Been;Kim, Yong Gyu;Han, Shin Tak
    • Journal of the Korean Society of Safety
    • /
    • v.35 no.4
    • /
    • pp.74-83
    • /
    • 2020
  • In Korea, about 110,000 LPG small storage tanks of less than three tons have been installed in restaurants, houses and factories, and are used as LPG supply facilities for cooking, heating and industrial use. In the case of combustible liquefied gas storage tanks, the tank may rupture due to the temperature increase of the tank steel plate (approximately 600℃) even when the safety valve is operating normally, causing large-scale damage in an instant. Therefore, in the event of a fire near the LPG small storage tank, it is necessary to accurately predict the timing of the BLEVE(Boiling Liquid Expanding Vapour Explosion) outbreak in order to secure golden time for lifesaving and safely carry out fire extinguishing activities. In this study, we have first investigated the results of a prior study on the prediction of the occurrence of BLEVE in the horizontal tanks. And we have developed thermodynamic models and simulation program on the prediction of BLEVE that can be applied to vertical tanks used in Korea, have studied the effects of the safety valve's ability to vent, heat flux strength of external fires, size of tanks, and gas remaining in tanks on the time of BLEVE occurrence and have suggested future utilization measures.