DOI QR코드

DOI QR Code

A Study on the Rupture Disk Design and Application at the Two Phase Flow by Runaway Reaction at Batch Reactor

회분식 반응기에서 반응폭주에 의한 2-Phase 흐름 파열판 설계 및 적용에 관한 연구

  • Lee, Hyung-Sub (Professional Eng. Bureau, Korea Occupational Safety & Health (KOSHA)) ;
  • Yun, Hee-Chang (Professional Eng. Bureau, Korea Occupational Safety & Health (KOSHA))
  • 이형섭 (한국산업안전보건공단 전문기술실) ;
  • 윤희창 (한국산업안전보건공단 전문기술실)
  • Received : 2017.03.09
  • Accepted : 2017.05.26
  • Published : 2017.06.30

Abstract

The purpose of this study is to suggest the rupture disk design(size) and application at the two phase(gas-liquid) flow by runaway reaction at batch reactor. The definition of runaway reaction is abnormally exothermic reaction by the uncontrolled cooling water or deviated operating condition. As a result, the temperature of reactor is rapidly increasing. The causes of runaway reaction are either self-heating reaction or sleeper reaction. General methods of rupture disk size or safety valve are not suitable in the runaway reaction, because of temperature and pressure increasing rapidly in the reactor and the phases of relieving fluid is 2-phase flow. This study case of the reactor incident, the depressurization system such as safety valve and vent installed, however, the system did not relieved the pressure of reactor suitably. The orifice size of the safety valve were designed too small because the size had not been considered the phenomena and character of reaction. The batch reactor design should be considered by referring to the possibility of runaway reaction proposed in this study and the size of rupture disk design method considering 2-phase flow.

이 연구의 목적은 회분식 반응기에서 반응폭주에 의하여 2상(기상-액상)에서 적용가능한 파열판의 크기를 설계하는 방안을 제시하는 것이다. 반응폭주의 정의는 제어가 되지 않은 냉각수 투입불가 또는 운전조건의 이탈에 의한 비정상적으로 발열반응을 말한다. 이 결과로 반응기의 온도는 급격히 증가하게 된다. 반응폭주의 원인은 크게 자기과열반응과 지연반응으로 구분한다. 일반적인 안전밸브나 파열판의 내경 크기로는 폭주반응시에는 적절하게 압력을 해소할 수 없다. 폭주반응 시 반응온도 및 압력이 급격하게 증가하기 때문에 안전밸브로 분출되는 내용물은 2상이다. 이 연구에서는 최근 회분식 반응기의 폭주반응으로 인하여 사고사례의 원인을 분석하고, 2 상으로 분출현상 및 특징을 설정하고, 이에 적절한 파열판의 크기를 설계하여 적용하는 방안을 제시하고자 한다.

Keywords

References

  1. KOSHA, Chemical accident statistics, 2014, 2015 and 2016.
  2. Francis Stoessel, Thermal Safety of Chemical Processes Risk Assessment and Process Design pp. 61-75, WILEY-VCH, 2008
  3. Chemical reaction hazards and the risk of thermal runaway 2-3, INDG254 HSE, 2014
  4. KOSHA Guide P-67, Technical guide for thermal risk assessment for protection of runaway reaction, KOSHA, 2012
  5. Chun, Y. W The Study of VOC Treatment Facility Risk Mitigation with Safety Instrument System, PP. 86-88, 2012
  6. Francis Stoessel, Planning Protection Measures against Runaway Reactions using Criticality Classes, Process Safety and Environmental Protection No. 87, PP105-112, 2009
  7. KOSHA Guide D-26, Technical guide for design of safety valve size of chemical process, KOSHA, 2012
  8. AIChE, Emergency Relief System Design Using DIERS Technology pp. 399-400, 1992
  9. Daniel A. Crowl and Joseph F Louvar, Chemical Process Safety Fundamentals with Applications, Dong Hwa Technology Publishing Co. 2nd Edition, pp . 398-406, 2013.
  10. KOSHA Guide P-65, Technical guide for design of rupture disk size against runaway reaction, KOSHA, 2012
  11. Hee-Chang Yun, Investigation report of LGOOO incident, KOSHA, 2015.