• Title/Summary/Keyword: Velocity of penetration

Search Result 372, Processing Time 0.025 seconds

Two Dimensional Shear Wave Velocity Using the Inversion of Surface Waves (표면파 역산을 이용한 2차원 S파 속도구조에 관한 연구)

  • Jung, Hee-Ok
    • Journal of the Korean earth science society
    • /
    • v.21 no.6
    • /
    • pp.675-682
    • /
    • 2000
  • 25 seismic shot gathers were obtained to study the two dimensional subsurface shear wave velocities in a landfilled area near the Keum river estuary. Borehole(BH#1 and BH#2) tests at two sites were made in the same area. Standard Penetration Tests were also performed at the same time. The 2-D shear wave velocity structure resulted from the inversion of the seismic data shows that the subsurface of the studied area consists of the upper 1${\sim}$3 meter thick layer(200 m/sec${\sim}$700 m/sec), the middle 5${\sim}$8 m thick low velocity layer(100 m/sec${\sim}$400 m/sec), and the lower layer of 1000m/sec or higher shear wave velocities. The thickness of the low velocity layer decreases from the BH #1 site to the BH #2 site. The depth to the basement also decreases toward the BH #2 site. The examination of the S wave velocity structure, the description of the geologic contents, and the Standard Penetration Test values indicate that the middle layer of low shear wave velocity may be related to the clay content of the layer. On the other hand, the Standard Penetration test values increase with depth, showing no significant relationship with the geologic contents of the subsurface. This study shows that the inversion of surface waves can be effective in the study of the shear wave velocity, especially in the area where low velocity layers can be found. The method of inversion of surface waves also can be used as a viable technique to overcome the limit of the seismic refraction method.

  • PDF

Prediction of the Penetration Energy for Composite Laminates Subjected to High-velocity Impact Using the Static Perforation Test (정적압입 관통실험을 이용한 복합재 적층판의 고속충격 관통에너지 예측)

  • You, Won-Young;Lee, Seokje;Kim, In-Gul;Kim, Jong-Heon
    • Composites Research
    • /
    • v.25 no.5
    • /
    • pp.147-153
    • /
    • 2012
  • In this paper, static perforation tests are conducted to predict the penetration energy for the composite laminates subjected to high velocity impact. Three methods are used to analyze the perforation energy accurately. The first method is to select the perforation point using the AE sensor signal energy, the second method is to retest the tested specimen and use the difference between initial and retested perforation energy, and the third method is to select the perforation point based on the maximum loading point in the retested load-displacement curve of the tested specimen. The predicted perforation energy results are presented and verified by comparing with those by the high velocity tests.

Effect of Circumferential Velocity from Guide Vane on the Nozzle Flow of a Jet Fan (제트팬 노즐내부 유동에 대한 고정익 출구 원주속도의 영향)

  • 최충현;이재헌
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.3
    • /
    • pp.209-216
    • /
    • 2001
  • A numerical study is peformed to investigate the effect of circumferential velocity generated by the guide vane on the nozzle flow of a jet fan, s a way of increasing the penetration force of jet fan with nozzle of 175mm diameter. For the validation of numerical results. the velocity is measured by a 5-hole pitot tube and flow visualization is conducted by the tuft method. Under the inlet condition that the maximum circumferential velocity in the stator outlet of the present jet fan is 1.8m/s, the axial velocity in the nozzle outlet has the feature that the velocity at the axis is low and the velocity near the wall high. Therefore, to increase the throw length of the jet fan, the configuration of the fairing and nozzle needs to be developed and the precise revise of the stator angle is required, In addition, the bigger the circumferential velocity, the smaller the axial velocity at the axis and the bigger non-uniformity of the flow distribution.

  • PDF

Semi-Empirical Analysis of the Mass Transfer Characteristics of the Slug Flow in Vertical Mesoscale Tubes (작은 수직관을 흐르는 슬러그 유동의 물질전달 특성에 대한 반경험적 해석)

  • Kim, Dong-Seon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.26 no.8
    • /
    • pp.366-374
    • /
    • 2014
  • Experimental mass transfer data, which were obtained for the $CO_2$-water slug flows in vertical tubes with 2, 5, and 8mm diameters, were analyzed in comparison with the penetration theory. It was found that a penetration model with molecular diffusion coefficient cannot predict the experimental data accurately. An effective diffusion coefficient, which considers enhancement effect of interfacial waves, was suggested to improve prediction. Another empirical factor was also suggested to consider the effect of non-uniform interface velocity. A modified penetration model was found to be capable of predicting the experimental data reasonably well.

A Comparative Study Between CFD and 0-D Simulation of Diesel Sprays with Several Fuel Injection Patterns Using Gas Jet Spray Model (가스제트 분무 모델을 이용한 다양한 분사 패턴의 디젤 분무에 대한 CFD 및 0-D 시뮬레이션 비교 연구)

  • Lee, Choong-Hoon
    • Journal of ILASS-Korea
    • /
    • v.17 no.2
    • /
    • pp.77-85
    • /
    • 2012
  • The CFD simulation of diesel spray tip penetrations were compared with 0-D simulation for experimental data obtained with common rail injection system. The simulated four injection patterns include single, pilot and split injections. The CFD simulation of the spray penetration over these injection patterns was performed using the KIVA-3V code, which was implemented with both the standard KIVA spray and original gas jet sub-models. 0-D simulation of the spray tip penetration with time-varying injection profiles was formulated based on the effective injection velocity concept as an extension of steady gas jet theory. Both the CFD simulation of the spray tip penetration with the standard KIVA spray model and 0-D simulation matched better with the experimental data than the results of the gas jet model for the entire fuel injection patterns.

High-Velocity Impact Damage Behavior of Carbon/Epoxy Composite Laminates

  • Kim, Young A.;Woo, Kyeongsik;Cho, Hyunjun;Kim, In-Gul;Kim, Jong-Heon
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.16 no.2
    • /
    • pp.190-205
    • /
    • 2015
  • In this paper, the impact damage behavior of USN-150B carbon/epoxy composite laminates subjected to high velocity impact was studied experimentally and numerically. Square composite laminates stacked with $[45/0/-45/90]_{ns}$ quasi-symmetric and $[0/90]_{ns}$ cross-ply stacking sequences and a conical shape projectile with steel core, copper skin and lead filler were considered. First high-velocity impact tests were conducted under various test conditions. Three tests were repeated under the same impact condition. Projectile velocity before and after penetration were measured by infrared ray sensors and magnetic sensors. High-speed camera shots and C-Scan images were also taken to measure the projectile velocities and to obtain the information on the damage shapes of the projectile and the laminate specimens. Next, the numerical simulation was performed using explicit finite element code LS-DYNA. Both the projectile and the composite laminate were modeled using three-dimensional solid elements. Residual velocity history of the impact projectile and the failure shape and extents of the laminates were predicted and systematically examined. The results of this study can provide the understanding on the penetration process of laminated composites during ballistic impact, as well as the damage amount and modes. These were thought to be utilized to predict the decrease of mechanical properties and also to help mitigate impact damage of composite structures.

A Study on the Fabrication of the Composite Sabot for a Kinetic Energy Projectile (운동에너지탄용 복합재 이탈피의 제조에 관한 연구)

  • Choi, Jae-Ho
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.9 no.3
    • /
    • pp.88-94
    • /
    • 2006
  • In order to substitute current aluminum sabot and to increase the penetration performance of the kinetic energy projectiles, the research and development program for composites sabot has been conducted. For carbon/epoxy composites sabot, unidirectional carbon fiber reinforced epoxy prepreg was chosen and thick sectioned composites preforms with the different fiber angles along the circumferential direction of sabot were prepared by compression molding under the careful processing conditions at $150^{\circ}C$ for 1hour with $70kgf/cm^2$ curing pressure. The composites sabot demonstrated a weight reduction by approximately 30% than that of current aluminum sabot. The muzzle velocity of a kinetic energy projectile with composites sabot was measured to be about 63m/s higher than that with aluminum sabot. These results imply that the penetration performance is expected to be considerably increased when the composite sabot is applied to the kinetic energy projectiles.

Experimental investigation of steel fiber effects on anti-penetration performance of self-compacting concrete

  • Jian Ma;Liang Bian;Jie Zhang;Kai Zhao;Huayan Yao;Yongliang Zhang
    • Advances in concrete construction
    • /
    • v.16 no.2
    • /
    • pp.119-126
    • /
    • 2023
  • Steel fiber reinforced self-compacting concrete (SFRSCC) has good workability such as high flowability and good cohesiveness. The workability, compressive strength, splitting tensile strength, and anti-penetration characteristics of three kinds of SFRSCC were investigated in this paper. The fraction of steel fibers of the SFRSCC is 0.5%, 1.5% and 2.0% respectively. The results of the static tests show that the splitting tensile strength increases with the increase of fraction of steel fibers, while the compressive strength of 1.5% SFRSCC is lowest. It is demonstrated that the anti-penetration ability of 1.5% SFRSCC subjected to a velocity projectile (200-500 m/s) is better than 0.5% and 2.0% SFRSCC according to the experimental results. Considering the steel fiber effects, the existing formula is revised to predict penetration depth, and it is revealed that the revised predicted depth of penetration is in good agreement with the experimental results. The conclusion of this paper is helpful to the experimental investigations and engineering application.

Penetration Fracture Characteristics of Orthotropic CFRP Laminates Shells according to Curvature (곡률이 다른 직교이방성 CFRP 적층쉘의 관통파괴특성)

  • Yang, Yong Jun;Pyeon, Seok Beom;Cha, Cheon Seok;Yang, In Young
    • Journal of the Korean Society of Safety
    • /
    • v.31 no.6
    • /
    • pp.6-11
    • /
    • 2016
  • CFRP composite laminates are widely used as structural materials for airplanes, automobile and aerospace vehicles because of their high strength and stiffness. This study aims to examine an effect of curvature on the penetration fracture characteristic of an orthotropic composite laminated shell. For the purpose, we manufactured orthotropic CFRP shell specimen with different curvatures, and conducted a penetration test using an air-gun. Those specimens were prepared to varied curvature radius(${\infty}$, 200mm, 150mm and 100mm)and were stacked to $[O^{\circ}{_3}/90^{\circ}{_3}]_s$. When the specimen is subjected to transverse impact by a steel sphere(${\Phi}10$), the velocity of steel sphere was measured both before and after impact by determining the time for it to pass two ball-screen sensors located a known distance apart. As the curvature increases, the absorption energy and the critical penetration energy increased linearly because the resistance to the bending moment. Patterns of cracks caused by the penetration of CFRP laminated shells included fiber breakage, lamina fracture, matrix crack interlaminar crack and intralaminar crack.

An Effect of surface treatment on a Protection Ballistic Limits in armor material (표면처리가 장갑재료의 방호한계에 미치는 영향)

  • 손세원;김희재;이두성;홍성희;유명재
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.12
    • /
    • pp.126-134
    • /
    • 2003
  • In order to investigate the effect of surface treatment in Aluminium alloy and Titanium alloy which are used to armor material during ballistic impact, a ballistic testing was conducted. Anodizing was used to achieve higher surface hardness of Aluminium alloy and Iron plating in PVD(Physical Vapor Deposition) method was used to achieve higher surface hardness of Titanium alloy. Surface hardness test were conducted using a Micro victor's hardness tester. Ballistic resistance of these materials was measured by protection ballistic limit(V-50), a statical velocity with 50% probability penetration. Fracture behaviors and ballistic tolerance, described by penetration modes, are respectfully observed from the results of V-50 test and Projectile Through Plates (PTP) test at velocities greater than V-50. PTP tests were conducted with 0$^{\circ}$obliquity at room temperature using 5.56mm ball projectile. V-50 tests were conducted with 0$^{\circ}$obliquity at room temperature with projectiles that were able to achieve near or complete penetration during PTP tests. Surface hardness, resistance to penetration. and penetration modes of surface treated alloy laminates are compared to those of surface non-treated alloy laminates. A high speed photography was used to analyze the dynamic perforation phenomena of the test materials.