Surface Solar Insolation is important for vegetation productivity, hydrology, crop growth, etc. In this study, Surface Solar Insolation is estimated using Multi-functional Transport Satellite (MTSAT-1R) in clear and cloudy conditions. For the Cloudy sky cases, the surface solar insolation is estimated by taking into account the cloud transmittance and multiple scattering between cloud and surface. This model integrated Kawamura's model and SMAC code computes surface solar insolation with a 5km ${\times}$ 5km spatial resolution in hourly basis. The daily value is derived from the available hourly Surface Solar Insolation, independently for every pixel. To validation, this study uses ground truth data recorded from the pyranometer installed by the Korea Meteorological Agency (KMA). The validation of estimated value is performed through a match-up with ground truth. Various match-up with ground truth. Various match-up window sizes are tested with 3${\times}$3, 5${\times}$5, 7${\times}$7, 9${\times}$9, 10${\times}$10, 11${\times}$11, 13${\times}$13 pixels to define the spatial representativity of pyranometer measurement, and to consider drifting clouds from adjacent pixels across the ground station during the averaging interval of 1 hour are taken into account.
Surface Solar Insolation is important for vegetation productivity, hydrology, crop growth, etc. In this study, Surface Solar Insolation is estimated using Multi-functional Transport Satellite (MTSAT-1R) in clear and cloudy conditions. For the Cloudy sky cases, the surface solar insolation is estimated by taking into account the cloud transmittance and multiple scattering between cloud and surface. This model integrated Kawamura's model and SMAC code computes surface solar insolation with a $5\;km{\times}5\;km$ spatial resolution in hourly basis. The daily value is derived from the available hourly Surface Solar Insolation, independently for every pixel. To validation, this study uses ground truth data recorded from the pyranometer installed by the Korea Meteorological Agency (KMA). The validation of estimated value is performed through a match-up with ground truth. Various match-up with ground truth. Various match-up window sizes are tested with $3{\times}3,\;5{\times}5,\;7{\times}7,\;9{\times}9,\;10{\times}10,\;11{\times}11,\;13{\times}pixels to define the spatial representativity of pyranometer measurement, and to consider drifting clouds from adjacent pixels across the ground station during the averaging interval of 1 hour are taken into account.
Proceedings of the Korea Water Resources Association Conference
/
2019.05a
/
pp.164-175
/
2019
The Tor Tong Daeng Irrigation Project with the irrigation area of 61,400 hectares is located in the Ping Basin of the Upper Central Plain of Thailand where farmers depended on both surface water and groundwater. In the drought year, water storage in the Bhumipol Dam is inadequate to allocate water for agriculture, and caused water deficit in many irrigation projects. Farmers need to find extra sources of water such as water from farm pond or groundwater as a supplement. The operation of Bhumipol Dam and irrigation demand estimation are vital for irrigation water allocation to help solve water shortage issue in the irrigation project. The study aims to determine the smart dam operation system to mitigate water shortage in this irrigation project via introduction of machine learning to improve dam operation and irrigation demand estimation via soil moisture estimation from satellite images. Via ANN technique application, the inflows to the dam are generated from the upstream rain gauge stations using past 10 years daily rainfall data. The input vectors for ANN model are identified base on regression and principal component analysis. The structure of ANN (length of training data, the type of activation functions, the number of hidden nodes and training methods) is determined from the statistics performance between measurements and ANN outputs. On the other hands, the irrigation demand will be estimated by using satellite images, LANDSAT. The Enhanced Vegetation Index (EVI) and Temperature Vegetation Dryness Index (TVDI) values are estimated from the plant growth stage and soil moisture. The values are calibrated and verified with the field plant growth stages and soil moisture data in the year 2017-2018. The irrigation demand in the irrigation project is then estimated from the plant growth stage and soil moisture in the area. With the estimated dam inflow and irrigation demand, the dam operation will manage the water release in the better manner compared with the past operational data. The results show how smart system concept was applied and improve dam operation by using inflow estimation from ANN technique combining with irrigation demand estimation from satellite images when compared with the past operation data which is an initial step to develop the smart dam operation system in Thailand.
Journal of the Korean Society of Environmental Restoration Technology
/
v.11
no.1
/
pp.72-84
/
2008
Since enactment of the Baekdu-Mountain Range protection law in Dec. 31st 2003, great interest arose in recovery of the natural environment in the Baekdu-Mountain Range. Since the Baekdu-Mountain Range has formed boundaries between different regions and it is the mountain that crosses our country from East to West, there are so many roads that penetrate this area. Slopes made by the construction of roads have poor foundation for the growth of vegetation and it takes a long period to restore only with natural restoration force. For this reason, various methods of revegetation to restore the damages are implemented but until now, revegetation of domestic soil cutting slopes are mainly covered by foreign import grasses to stabilize and cover grounds early. As we depended upon foreign import grasses for slopes revegetation, the landscape did not match in harmony with surrounding vegetation and therefore, we could see that these foreign grasses are withered in 2~3 years after the revegetation works and slopes become barren again. However, currently, there are no applicable standards for designs of green hill, desirable revegetation methods for the hill areas, roads and recovery models. Therefore, in this study, we investigated the status of revegetation plants and revegetation methods for the hill areas of the Baekdu-Mountain Range (azimuth, degree of tilt, and tilted places). Based on this, we attempted to find the desirable recovery models for the hill areas of the Baekdu-Mountain Range.
Korean Journal of Agricultural and Forest Meteorology
/
v.17
no.4
/
pp.384-398
/
2015
In this paper, the high-resolution Weather Research and Forecasting/Noah-MultiParameterization (WRF/Noah-MP) modeling system is configured for the Cheongmicheon Farmland site in Korea (CFK), and its performance in land and atmospheric simulation is evaluated using the observed data at CFK during the 2014 special observation period (21 August-10 September). In order to explore the usefulness of turning on Noah-MP dynamic vegetation in midterm simulations of surface and atmospheric variables, two numerical experiments are conducted without dynamic vegetation and with dynamic vegetation (referred to as CTL and DVG experiments, respectively). The main results are as following. 1) CTL showed a tendency of overestimating daytime net shortwave radiation, thereby surface heat fluxes and Bowen ratio. The CTL experiment showed reasonable magnitudes and timing of air temperature at 2 m and 10 m; especially the small error in simulating minimum air temperature showed high potential for predicting frost and leaf wetness duration. The CTL experiment overestimated 10-m wind and precipitation, but the beginning and ending time of precipitation were well captured. 2) When the dynamic vegetation was turned on, the WRF/Noah-MP system showed more realistic values of leaf area index (LAI), net shortwave radiation, surface heat fluxes, Bowen ratio, air temperature, wind and precipitation. The DVG experiment, where LAI is a prognostic variable, produced larger LAI than CTL, and the larger LAI showed better agreement with the observed. The simulated Bowen ratio got closer to the observed ratio, indicating reasonable surface energy partition. The DVG experiment showed patterns similar to CTL, with differences for maximum air temperature. Both experiments showed faster rising of 10-m air temperature during the morning growth hours, presumably due to the rapid growth of daytime mixed layers in the Yonsei University (YSU) boundary layer scheme. The DVG experiment decreased errors in simulating 10-m wind and precipitation. 3) As horizontal resolution increases, the models did not show practical improvement in simulation performance for surface fluxes, air temperature, wind and precipitation, and required three-dimensional observation for more agricultural land spots as well as consistency in model topography and land cover data.
In this study, a GIS model to simulate the behavior of surface forest fires was developed on the basis of forest fire growth prediction algorithm. This model consists of three modules for data-handling, simulation and report writing. The data-handling module was designed to interpret such forest fire environment factors as terrain, fuel and weather and provide sets of data required in analyzing fire behavior. The simulation module simulates the fire and determines spread velocity, fire intensity and burnt area over time associated with terrain slope, wind, effective humidity and such fuel condition factors as fuel depth, fuel loading and moisture content for fire extinction. The module is equipped with the functions to infer the fuel condition factors from the information extracted from digital vegetation map sand the fuel moisture from the weather conditions including effective humidity, maximum temperature, precipitation and hourly irradiation. The report writer has the function to provide results of a series of analyses for fire prediction. A performance test of the model with the 2002 Chungyang forest fire showed the predictive accuracy of 61% in spread rate.
The displacement monitoring of unstable block at the rock slope located in the Cheonbuldong valley of Seoraksan National Park was carried out using Terrestrial LiDAR. The rock slopes around Guimyeonam and Oryeon waterfall where rockfall has occurred or is expected to occur are selected as the monitoring section. The displacement monitoring of unstable block at the rock slope in the selected area was performed 5 times for about 7 months using Terrestrial LiDAR. As a result of analyzing the displacement based on the Terrestrial LiDAR scanning, the error of displacement was highly influenced by the interpolation of the obstruction section and the difference of plants growth. To minimize the external influences causing the error, the displacement of unstable block should be detected at the real scanning point. As the result of analyzing the displacement of unstable rock at the rock slope using the Terrestrial LiDAR data, the amount of displacement was very small. Because the amount of displacement was less than the range of error, it was difficult to judge the actual displacement occurred. Meanwhile, it is important to select a section without vegetation to monitor the precise displacement of unstable rock at the rock slope using Terrestrial LiDAR. Also, the PointCloud removal and the mesh model analysis in a vegetation section were the most important work to secure reliability of data.
Korean Journal of Agricultural and Forest Meteorology
/
v.23
no.4
/
pp.329-339
/
2021
Soybeans (Glycine max), one of major upland crops, require precise management of environmental conditions, such as temperature, water, and soil, during cultivation since they are sensitive to environmental changes. Application of spectral technologies that measure the physiological state of crops remotely has great potential for improving quality and productivity of the soybean by estimating yields, physiological stresses, and diseases. In this study, we developed and validated a soybean growth prediction model using multispectral imagery. We conducted a linear regression analysis between vegetation indices and soybean growth data (fresh weight and LAI) obtained at Miryang fields. The linear regression model was validated at Goesan fields. It was found that the model based on green ratio vegetation index (GRVI) had the greatest performance in prediction of fresh weight at the calibration stage (R2=0.74, RMSE=246 g/m2, RE=34.2%). In the validation stage, RMSE and RE of the model were 392 g/m2 and 32%, respectively. The errors of the model differed by cropping system, For example, RMSE and RE of model in single crop fields were 315 g/m2 and 26%, respectively. On the other hand, the model had greater values of RMSE (381 g/m2) and RE (31%) in double crop fields. As a result of developing models for predicting a fresh weight into two years (2018+2020) with similar accumulated temperature (AT) in three years and a single year (2019) that was different from that AT, the prediction performance of a single year model was better than a two years model. Consequently, compared with those models divided by AT and a three years model, RMSE of a single crop fields were improved by about 29.1%. However, those of double crop fields decreased by about 19.6%. When environmental factors are used along with, spectral data, the reliability of soybean growth prediction can be achieved various environmental conditions.
With results from previous Korean studies on forest thinning, we conducted a meta-analysis on the effect of thinning on diameter at breast height (DBH) growth and carbon (C) stocks (tree, litter layer, coarse woody debris (CWD), and soils) in Korean forests. Thinning increased the DBH growth and the C stocks in soils by 39.2% and 12.8%, respectively, while it decreased the C stocks in tree by 30.9%. In contrast, thinning had no significant effect on the C stocks in litter layer and CWD. The DBH growth and the C stocks in tree showed significant correlations with thinning intensity and recovery time. The C stocks in litter layer correlated with recovery time while those in CWD and soils did not show significant correlation neither with thinning intensity nor with recovery time. Regression models of the DBH growth and the C stocks in tree were developed to quantify the effect of thinning intensity and recovery time. An integration of the regression model of the tree C stock into forest carbon models is expected to be essential to quantify the effect of thinning on the C stocks in litter layer, CWD, and soils. We also suggested expansion of study species, long-term and frequent monitoring, and investigation on understory vegetation in order to elucidate changes in Korean forests following thinning practices.
Journal of the Korean Institute of Landscape Architecture International Edition
/
no.1
/
pp.59-66
/
2001
The tremendous growth of population and physical development in the largest urban agglomeration in Indonesia -the Jakarta Metropolitan Region, also known as Jabotabek (Jakarta, Bogor, Tanggerang, Bekasi)- has created many environmental problems, such as land use conversion, increasing urban temperature, water and air pollution, intrusion of seawater, and flooding. These problems have become more serious as the urban green space (trees, shrubs, and groundcovers) has decreased rapidly with the urbanization process. Urban green space directly benefits the urban environment through ameliorating air pollution, controlling temperature, contributing to the balance of the hydrological system, and providing space for recreation and relaxation. Because there is little hard data to support the claim of decreasing greenery in Jabotabek, it is necessary to measure the amount of urban green space. The paper describes the spatial analysis of urban green space within Jabotabek through the use of a geographical information system (GIS). We used GIS and remote sensing to determine land cover change and predicted greenery percentage. Interpretation of Landsat data for 1972, 1983, 1990, and 1997 showed that Jabotabek has experiences rapid development and associated depletion of green open space. The proportion of green open space fell by 23% from 1972 to 1997. We found a low percentage of urban green space in the center of Jakarta but a high percentage in fringe area. The amount of greenery is predicted by the Ratio Vegetation Index (RVI) model: predicted greenery (%) = [146.04] RVI - 134.96. We consider that our result will be useful for landscape planning to improve the environment of Jabotabek.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.