• Title/Summary/Keyword: Vector diagnosis

Search Result 242, Processing Time 0.038 seconds

Research on Oriental Medicine Diagnosis and Classification System by Using Neck Pain Questionnaire (경항통 설문지를 이용한 한의학적 진단 및 분류체계에 관한 연구)

  • Song, In;Lee, Geon-Mok;Hong, Kwon-Eui
    • Journal of Acupuncture Research
    • /
    • v.28 no.3
    • /
    • pp.85-100
    • /
    • 2011
  • Objectives : The purpose of this thesis is to help the preparation of oriental medicine clinical guidelines for drawing up the standards of oriental medicine demonstration and diagnosis classification about the neck pain. Methods : Statistical analysis about Gyeonghangtong(頸項痛), Nakchim(落枕), Sagyeong(斜頸), Hanggang (項强) classified experts' opinions about neck pain patients by Delphi method is conducted by using oriental medicine diagnosis questionnaire. The result was classified by using linear discriminant analysis (LDA), diagonal linear discriminant analysis (DLDA), diagonal quadratic discriminant analysis (DQDA), K-nearest neighbor classification (KNN), classification and regression trees (CART), support vector machines (SVM). Results : The results are summarized as follows. 1. The result analyzed by using LDA has a hit rate of 84.47% in comparison with the original diagnosis. 2. High hit rate was shown when the test for three categories such as Gyeonghangtong and Hanggang category, Sagyeong caterogy and Nakchim caterogy was conducted. 3. The result analyzed by using DLDA has a hit rate of 58.25% in comparison with the original diagnosis. The result analyzed by using DQDA has a accuracy of 57.28% in comparison with the original diagnosis. 4. The result analyzed by using KNN has a hit rate of 69.90% in comparison with the original diagnosis. 5. The result analyzed by using CART has a hit rate of 69.60% in comparison with the original diagnosis. There was a hit rate of 70.87% When the test of selected 8 significant questions based on analysis of variance was performed. 6. The result analyzed by using SVM has a hit rate of 80.58% in comparison with the original diagnosis. Conclusions : Statistical analysis using oriental medicine diagnosis questionnaire on neck pain generally turned out to have a significant result.

On-load Parameter Identification of an Induction Motor Using Univariate Dynamic Encoding Algorithm for Searches

  • Kim, Jong-Wook;Kim, Nam-Gun;Choi, Seong-Chul;Kim, Sang-Woo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.852-856
    • /
    • 2004
  • An induction motor is one of the most popular electrical apparatuses owing to its simple structure and robust construction. Parameter identification of the induction motor has long been researched either for a vector control technique or fault detection. Since vector control is a well-established technique for induction motor control, this paper concentrates on successive identification of physical parameters with on-load data for the purpose of condition monitoring and/or fault detection. For extracting six physical parameters from the on-load data in the framework of the induction motor state equation, unmeasured initial state values and profiles of load torque have to be estimated as well. However, the analytic optimization methods in general fail to estimate these auxiliary but significant parameters owing to the difficulty of obtaining their gradient information. In this paper, the univariate dynamic encoding algorithm for searches (uDEAS) newly developed is applied to the identification of whole unknown parameters in the mathematical equations of an induction motor with normal operating data. Profiles of identified parameters appear to be reasonable and therefore the proposed approach is available for fault diagnosis of induction motors by monitoring physical parameters.

  • PDF

Fault Detection and Diagnosis of Winding Short in BLDC Motors Based on Fuzzy Similarity

  • Bae, Hyeon;Kim, Sung-Shin;Vachtsevanos, George
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.9 no.2
    • /
    • pp.99-104
    • /
    • 2009
  • The turn-to-turn short is one major fault of the motor faults of BLDC motors and can appear frequently. When the fault happens, the motor can be operated without breakdown, but it is necessary to maintain the motor for continuous working. In past research, several methods have been applied to detect winding faults. The representative approaches have been focusing on current signals, which can give important information to extract features and to detect faults. In this study, current sensors were installed to measure signals for fault detection of BLDC motors. In this study, the Park's vector method was used to extract the features and to isolate the faults from the current measured by sensors. Because this method can consider the three-phase current values, it is useful to detect features from one-phase and three-phase faults. After extracting two-dimensional features, the final feature was generated by using the two-dimensional values using the distance equation. The values were used in fuzzy similarity to isolate the faults. Fuzzy similarity is an available tool to diagnose the fault without model generation and the fault was converted to the percentage value that can be considered as possibility of the fault.

An Automatic Diagnosis for Rotor Bar Faults using Park's vector Pattern (팍스벡터 패턴을 이용한 회전자 바 고장 자동 진단)

  • Song, Myung-Hyun;Park, Kyu-Nam;Han, Dong-Gi;Yang, Chul-Oh
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.361-363
    • /
    • 2007
  • In this paper, an auto-diagnosis method of rotor bar fault for small induction motor is suggested. Usually FFT of stator currents are given the good results, but to detect the fault, slip is needed for calculating the feature frequency. The slip is varied as the load is changed. So in this paper, some alternative method for estimating the load is suggested. This method is based on the Park's vector pattern. The magnitudes of the feature frequency are compared with the threshhold that is predefined in the bounded range of load. The healthy rotor, single rotor bar fault and double rotor bar fault are tested with no load, 25%, 50%, 75%, and 100% rated load. From 50% to 100% rated load case, the rotor bar faults are detectable using indirect estimation of the load and the comparing the magnitudes of feature frequency. The no load case and under 40% rated load case, rotor fault are un detectable.

  • PDF

Multiple Faults Diagnosis in Induction Motors Using Two-Dimension Representation of Vibration Signals (진동 신호의 2차원 변환을 통한 유도 전동기 다중 결함 진단)

  • Jeong, In-Kyu;Kang, Myeongsu;Jang, Won-Chul;Kim, Jong-Myon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.10a
    • /
    • pp.338-345
    • /
    • 2013
  • Induction motors play an increasing importance in industrial manufacturing. Therefore, the state monitoring systems also have been considering as the key in dealing with their negative effect by absorbing faulty symptoms in motors. There are numerous proposed systems in literature, in which, several kinds of signals are utilized as the input. To solve the multiple faults problem of induction motors, like the proposed system, the vibration signals is good candidate. In this study, a new signal processing scheme was utilized, which transforms the time domain vibration signal into the spatial domain as an image. Then the spatial features of converted image then have been extracted by applying the dominant neighbourhood structure (DNS) algorithm. In addition, these feature vectors were evaluated to obtain the fruitful dimensions, which support to discriminate between states of motors. Because of reliability, the conventional one-against-all (OAA) multi-class support vector machines (MCSVM) have been utilized in the proposed system as classifier module. Even though examined in severity levels of signal-to-noise ratio (SNR), up to 15dB, the proposed system still reliable in term of two criteria: true positive (TF) and false positive (FP). Furthermore, it also offers better performance than five state-of-the-art systems.

  • PDF

A study on Defect Diagnosis of Gas Turbine Engine Using Hybrid SVM-ANN in Off-Design Region

  • Seo, Dong-Hyuck;Choi, Won-Jun;Roh, Tae-Seong;Choi, Dong-Whan
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.72-79
    • /
    • 2008
  • The weak point of the artificial neural network(ANN) is that it is easy to fall in local minima when it learns too much nonlinear data. Accordingly, the classification ratio must be low. To overcome this weakness, the hybrid method has been proposed. That is, the ANN learns data selectively after detecting the defect position by the support vector machine(SVM). First, the SVM has been used for determination of the defect position and then the magnitude of the defect has been measured by the ANN. In off-design condition, the operation region of the engine is wide and the nonlinearity of learning data increases. The module system, dividing the whole operating region into reasonably small-size sections, has been suggested to solve this problem. In this study, the proposed algorithm has diagnosed the defects of triple components as well as single and dual components of the gas turbine engine in off-design condition.

  • PDF

Analysis of Texture Features and Classifications for the Accurate Diagnosis of Prostate Cancer (전립선암의 정확한 진단을 위한 질감 특성 분석 및 등급 분류)

  • Kim, Cho-Hee;So, Jae-Hong;Park, Hyeon-Gyun;Madusanka, Nuwan;Deekshitha, Prakash;Bhattacharjee, Subrata;Choi, Heung-Kook
    • Journal of Korea Multimedia Society
    • /
    • v.22 no.8
    • /
    • pp.832-843
    • /
    • 2019
  • Prostate cancer is a high-risk with a high incidence and is a disease that occurs only in men. Accurate diagnosis of cancer is necessary as the incidence of cancer patients is increasing. Prostate cancer is also a disease that is difficult to predict progress, so it is necessary to predict in advance through prognosis. Therefore, in this paper, grade classification is attempted based on texture feature extraction. There are two main methods of classification: Uses One-way Analysis of Variance (ANOVA) to determine whether texture features are significant values, compares them with all texture features and then uses only one classification i.e. Benign versus. The second method consisted of more detailed classifications without using ANOVA for better analysis between different grades. Results of both these methods are compared and analyzed through the machine learning models such as Support Vector Machine and K-Nearest Neighbor. The accuracy of Benign versus Grade 4&5 using the second method with the best results was 90.0 percentage.

A Study on Crack Fault Diagnosis of Wind Turbine Simulation System (풍력발전기 모사 시스템에서의 균열 결함 진단에 대한 연구)

  • Bae, Keun-Ho;Park, Jong-Won;Kim, Bong-Ki;Choi, Byung-Oh
    • Journal of Applied Reliability
    • /
    • v.14 no.4
    • /
    • pp.208-212
    • /
    • 2014
  • An experimental gear-box was set-up to simulate the real situation of the wind-turbine. Artificial cracks of different sizes were machined into the gear. Vibration signals were acquired to diagnose the different crack fault conditions. Time-domain features such as root mean square, variance, kurtosis, normalized 6th central moments were used to capture the characteristics of different crack conditions. Normal condition, 1 mm crack condition, 2mm crack condition, 6mm crack condition, and tooth fault condition were compared using ANFIS and DAG-SVM methods, and three different DAG-SVM models were compared. High-pass filtering improved the success rates remarkably in the case of DAG-SVM.

Fault Diagnosis of Induction Motors by DFT and Wavelet (DFT와 웨이블렛을 이용한 유도전동기 고장진단)

  • Kwon, Mann-Jun;Lee, Dae-Jong;Park, Sung-Moo;Chun, Myung-Geun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.6
    • /
    • pp.819-825
    • /
    • 2007
  • In this paper, we propose a fault diagnosis algorithm of induction motors by DFT and wavelet. We extract a feature vector using a fault pattern extraction method by DFT in frequency domain and wavelet transform in time-frequency domain. And then we deal with a fusion algorithm for the feature vectors extracted from DFT and wavelet to classify the faults of induction motors. Finally, we provide an experimental results that the proposed algorithm can be successfully applied to classify the several fault signals acquired from induction motors.