풍력발전기 모사 시스템에서의 균열 결함 진단에 대한 연구

배근호¹·박종원^{1†}·김봉기²·최병오¹

¹한국기계연구원 신뢰성평가센터, ²한국기계연구원 시스템다이나믹연구실

A Study on Crack Fault Diagnosis

of Wind Turbine Simulation System

Keun-Ho Bae¹ • Jong-Won Park^{1†} • Bong-Ki Kim² • Byung-Oh Choi¹

¹Systems Engineering Research Division, Korea Institute of Machinery & Materials ²Acoustics Group, Korea Institute of Machinery & Materials

An experimental gear-box was set-up to simulate the real situation of the wind-turbine. Artificial cracks of different sizes were machined into the gear. Vibration signals were acquired to diagnose the different crack fault conditions. Time-domain features such as root mean square, variance, kurtosis, normalized 6th central moments were used to capture the characteristics of different crack conditions. Normal condition, 1 mm crack condition, 2mm crack condition, 6mm crack condition, and tooth fault condition were compared using ANFIS and DAG-SVM methods, and three different DAG-SVM models were compared. High-pass filtering improved the success rates remarkably in the case of DAG-SVM.

Keywords: Fault Diagnosis, Diagnosis, Crack, Wind Turbine, ANFIS, Support Vector Machine, SVM

1. 서론

풍력은 누적 세계적 용량이 120GW을 넘어서 급성장하고 있는 신재생 에너지원이다(World Wind Energy Association (Website)). 기존의 에너지에 대한 경쟁력을 가지기 위해서 에 너지 생산 단가(cost of energy, COE)를 줄이는 것이 중요하다. 또한, 유지보수 비용이 많이 드는 것이 주요한 이슈이다20년 동안 가동되는 풍력발전기의 경우 유지보수 비용이전체 수입 의 10~15%를 차지하는 것으로 평가된다(Walford, 2006).

따라서 풍력발전기에는 고장 진단 및 예측이 필요하며, 풍 력발전기의 고장 진단에 대한 문헌 조사들이 존재한다(Hyers et al., 2006; Hameed et al., 2009; Amirat et al., 2007). 고장 진 단은 패턴 인식 문제의 한 형태이며, 고장 상태는 정상 상태 로부터 벗어나는 상태를 말한다. 고장 진단에서 특성치 세트 (feature set) 추출과 고장 분류가 핵심 영역이며, 이에 대한 다 양한 방법이 고안되었다. 기어는 기계 시스템의 고장 진단 관 련 연구 분야의 주요 관심사였다. 하지만, 기어의 고장 진단 은 균열, 마모, 정렬 불량과 같은 서로 다른 종류의 고장에 대 한 연구가 대부분이었고, 같은 종류의 고장의 서로 다른 고장 강도에 대한 연구는 거의 없었다. 하지만 서로 다른 고장 강 도에 대한 연구는 고장 진단뿐만 아니라 고장 예측에 관한 연 구에서 중요하다. 본 연구에서는 기어에서의 균열에 대한 서 로 다른 강도의 고장에 대한 고장 진단 연구를 '적응 네트워 크 기반 퍼지 추론 시스템 (Adaptive Networked-based Fuzzy Inference System, ANFIS)'과 '서포트 벡터 머신(Support Vector Machine, SVM)'을 이용하여 수행하였다.

2. 고장 진단 알고리즘

2.1 적응 네트워크 기반 퍼지 추론 시스템(ANFIS)

ANFIS는 Jang에 의해서 1993년에 개발되었으며(Jang, 1993), 입력값을 입력 소속 함수(input membership function)와 연관 된 파라미터를 통해서 매핑하고, 출력 소속 함수(output membership function)를 이용해서 출력값을 매핑하는 방법이다. 초 기 소속 함수와 퍼지 추론 시스템을 결정하는 규칙은 대상이 되는 시스템에 대한 전문가의 견해를 반영하여 설계할 수 있 다. 그 이후에는 ANFIS가 복잡한 시스템의 입력-출력 관계에 따라서 if-then 규칙과 소속 함수를 수정해나갈 수 있다 Jang 은 시스템에 대한 전문가의 경험이 없더라도 합리적인 소속 함수를 직관적으로 설정할 수 있고 뉴럴 훈련neural training) 과정을 통해서 원하는 결과를 얻을 수 있는 fuzzy if-then 규칙 을 생성할 수 있다(Jang, 1993; Altmann and Mathew, 2001).

2.2 서포트 벡터 머신(SVM)

서포트 벡터 머신(SVM)은 Vapnik(Vapnik, 1999)에 의해서 고안된 또 다른 학습 알고리즘(learning algorithm)이며, 뉴럴 네트워크(neural network)와 의사 결정 트리(decision trees)에 비해서 몇 가지 장점이 있다(Pasha and Budtarto, 2006). 데이 터 S가 주어졌을 때, SVM의 목적은 데이터S를 두 개의 그룹 으로 나누는 직선을 찾는 것이다. 일반적으로 S는 2차원의 직 선에 의해서 나누어지지 않지만, 이를 경우S를 더 높은 차원 으로 변환한 후 직선을 이용해서 나눌 수 있다

서포트 벡터 머신은 작은 샘플, 비선형, 과학습(over-learning), 고차원과 지역 최소값과 같은 현실적인 문제를 해결할 수 있고, 일반화가 용이하다. 또한 고장 진단에 적합하다 (Xiang et al., 2008; Zhang et al., 2005; Abbasion et al., 2007). 하지만, SVM는 기본적으로 두 개의 그룹으로 판별하는 방법 이기 때문에, 여러 개의 고장 상태를 진단해야 하는 고장 진 단에 응용하기 위해서는 멀티 클래스 분류를 위한 부가적인 작업이 필요하다. 멀티 클래스 분류를 위한 SVM 방법에는 크게 두 가지가 있다. 첫 번째 그룹은 단지 하나의 SVM를 이 용해서 여러 가지 출력을 만드는 방법이다. 일반적으로 이 그 룹의 방법은 계산 방법이 복작하고 시간이 많이 소모되며 일 반적으로 분류 결과의 에러가 크다. 따라서 이 그룹에 속하는 방법은 실용적인 응용에 거의 사용되지 않는다. 또 다른 그룹 의 방법은 기본적인 SVM 여러 개를 다양한 방법으로 연결하 는 방법이다(Lin and Pan, 2009; Bredensteinerl and Bennett, 1999; Hsu and Lin, 2002). 한 가지 방법은 일대일(one to one) 알고리즘이며, 모든 두 가지 분류 조합에 대해서 하나의 SVM 를 생성하는 것이며, 따라서 k가지 분류에 대해서 총 k(k-1)/2 개의 SVM를 생성하게 된다. 또 다른 방법은 일대나머지(one to rest) 알고리즘은 하나의 분류와 그것을 제외한 나머지 조 합에 대해서 하나의 SVM을 생성하는 것이며, 따라서 k가지 분류에 대해서 총 k개의 SVM를 생성하게 된다. 세 번째 방 법은 Platt et al.(2000)에서 제안하는 방향성 비순환 그래프 (directed acyclic graph SVM, DAG-SVM) 방법이다. 훈련 과정 은 일대일 방법과 같이 k(k-1)/2개의 SVM를 생성한다. 하지 만 실제 분류를 하는 과정에서 k(k-1)/2개의 내부 노드와 k 개 의 꼭지를 가진 뿌리 이진 방향성 비순환 그래프rooted binarv directed acvclic graph)를 사용한다. 각각의 노드는 i와 j 클

래스에 대한 SVM이다. x라는 데이터가 주어졌을 때, 뿌리 노 드에서 시작해서 각 노드에서의 결과값에 따라서 오른쪽이 나 왼쪽으로 진행을 한다. 결과값 클래스가 나올 때까지 이 과정을 계속한다. Chih-Wei Hsu와 Chih-Jen Lin(Hsu and Lin, 2002)은 일대일 방법과 DAG 방법이 실제 응용문제에 사용하 기에는 더 적합하다는 것을 보였다. 또한, DAG 방법이 서로 다른 고장 정도와 특성치 세트 사이의 관계를 살펴보기에 적 합하기 때문에 본 연구에서는 DAG를 사용한다.

3. 시험 결과

3.1 실험 장비와 실험 방법

<그림 1>과 <그림 2>에 나와 있는 기어박스를 이용해서 실 험하였다. 700, 1000, 1300 과 1450 RPM의 회전속도를 사용 하였다. <그림 2>의 위치 G4에 있는 기어에 인위적인 균열을 생성하였으며, 서로 다른 크기의 균열을 실험하였다. 기어 이 결함(gear tooth fault)은 기어의 톱니 하나를 완전히 제거하여 모사하였다. <그림 2>에 나타난 3개의 샤프트의 여러 위치와 방향으로 가속도 센서를 부착하여 진동 신호를 측정하였다.

<그림 1> 풍력발전기 기어 박스 실험 장치

<그림 2> 기어 박스

3.2 시간 영역 특성치를 이용한 특성치 세트 추출

평균, 제곱평균(root mean square, RMS), 분산, 왜도(skewness), 첨도(kurtosis), 6차 중심 적률(normalized 6th central moment, N6CM)는 고장 진단 분야에서 많이 사용되고 있는 시간 영역 특성치들이다. 다양한 위치와 방향으로부터 얻은 진동 신호 를 사용하였는데, ABC 의 형태로 표현하였다. 입력축일 경우 A는 I, 출력축일 경우 A는 O, 첫 번째 샤프트는 B가 1, 두 번 째, 세 번째 샤프트의 경우 B가 각각 2, 3이며, x축, y축, z축 방향일 때 C가 x, y, z가 된다. 여러 곳에서의 진동 신호를 분 석한 결과 I₁y, O₁x, I₂y, O₃y의 데이터가 좋은 결과를 만들어 내 는 것을 발견하였다. 평균, 제곱평균, 분산, 왜도, 첨도, 6차 중 심 적률을 모두 사용하는 것은 분석 시간이 많이 걸리기 때문 에 풍력발전기의 실시간 고장 진단 알고리즘 개발을 최종 목 적으로 하는 본 연구에 적합하지 않는다.

제곱평균, 분산, 첨도와 6차 중심 적률을 특성치 세트로 선 택하였다. 서로 다른 고장 상태에 대한 각각의 특성치를 분석 한 결과, 제곱평균과 분산은 정상상태/균열 1mm/균열 2mm/ 균열 2mm/균열 6mm 상태를 구별할 수 있으며 첨도와 6차 중 심 적률은 기어 이 결함(tooth fault)을 구별할 수 있었다.

4. 고장 진단

매 진단 시, ANFIS와 SVM은 고장 상태가 알려진 실험 데 이터의 한 부분을 이용하여 학습시켰으며, 이렇게 학습된 ANFIS와 SVM를 이용하여 나머지 실험 데이터를 진단하였다

4.1 ANFIS를 이용한 고장 진단

매틀랩(MATLAB)에서 제공하는 ANFIS 툴박스를 이용하 여 고장 진단을 수행하였다. 회전속도 700 RPM에서 얻은 데 이터를 분석하였다. 각각의 입력은 2개의 gbell 형태의 소속 함수를 사용하였고, 그리드 분할 방법이 퍼지 추론 시스템으 로 사용되었다. 제곱평균, 분산, 첨도와 6차 중심 적률을 특성 치 세트로 사용하였다. 두 개의 가속도 센서로부터 얻은 진동 신호를 이용하여 특성치 세트를 만들 경우, 한 개의 진동 신 호로부터 특성치 세트를 만들 경우보다 진단 에러가 작았다 I₁v와 I₂v의 조합과 I₁v와 O₃v 조합이 다른 경우보다 더 좋은 결

	RPM	고장 진단 성공률(%)
	700	30
	1000	50
$I_{1y} \And I_{2y}$	1300	45
	1450	55
	평균	45

700

1000

1300

1450

평균

I_{1v} & O_{3v}

65

60

55

80

65

<표 1> ANFIS 고장 진단 성공률

과를 보였다. 이 두 조합을 이용하여 서로 다른 회전속도 700RPM, 1000RPM, 1300RPM, 1450RPM에서의 데이터를 사 용하여 ANFIS 고장 진단을 수행하였고, <표 1>에 나타나듯 이 1450RPM에서의 I_{1y}와 O_{3y}조합을 제외하고는 원하는 진단 성공률(80%)이 나오지 않았다.

4.2 서포트 벡터 머신(SVM)을 이용한 고장 진단

SVM는 기본적으로 주어진 입력 데이터를 두 개의 그룹으 로 구별한다. 본 연구에서는 균열 사이즈에 따른 서로 다른 고장 강도의 특성을 분석하기 위해서 DAG-SVM 방법을 이 용하였다. 여러 개의 SVM를 연결하여 고장 진단을 수행하였다 여러 가지 SVM를 어떤 형태와 순서로 연결할지에 대한 일반 적인 규칙은 존재하지는 않는다. 700RPM I1v & O3v 조합의 특 성치 세트를 이용하고 <그림 3>에서와 같이 두 가지 종류의 DAG-SVM를 사용하여 고장 진단을 하였다. 타입 1이 타입 2 보다 더 좋은 진단 결과를 보였다. DAG-SVM 타입 2를 사용 ठोव, I1v & I2v(700RPM), I1v & O3v(1000RPM, 1300RPM, 1450RPM) 고장 진단하였다. DAG-SVM의 특성상, 하나의 SVM를 지날 때마다 고장 진단 성공률은 최상의 경우 유지되 거나 아니면 대부분의 경우에서와 같이 낮아지게 된다. 따라서 첫 번째 SVM 후의 고장 진단 성공률을<표 2>에 표시하였다. 비교를 위해서 I_{1v} & O_{3v}(700RPM)의 경우도 포함하였다. I_{1v} & I_{2v}(700RPM)와 I_{1v} & O_{3v}(1000RPM, 1300RPM, 1450RPM) 의 고장 진단 성공률이 I1v & O3v(700RPM)의 95% 고장 진단 성공률보다 현저히 낮다는 것을 알 수 있다. 따라서 DAG-SVM 에서 그 이후로 SVM로 진행시킬 필요가 없다는 것을 알 수 있다.

 고장 진단 성공률(%)

 I_{1y} & I_{2y} 700RPM
 80

 I_{1y} & O_{3y} 1000RPM
 35

 I_{1y} & O_{3y} 1300RPM
 70

 I_{1y} & O_{3y} 1450RPM
 65

 I_{1y} & O_{3y} 700RPM
 95

<표 2> DAG-SVM 타입 2 첫 번째 SVM 후 고장 진단 성공률

4.3 하이 패스 필터를 이용한 고장 진단

가속도 센서로부터 얻는 진동 데이터는 노이즈를 포함할 수밖에 없으며, 고장 진단에서는 이 원하지 않는 노이즈를 제 거하는 것이 중요한 문제이다. 앞에서 살펴보았듯이, 필터를 사용하지 않고는 원하는 고장 진단 성공률을 얻지 못하였기 때문에 신호 필터를 사용하여 고장 진단을 시도해 보았다 1.28kHz를 차단 주파수(cut-off frequency)로 가지는 하이 패 스 필터를 매틀랩에서 제공하는 butter 함수를 이용하여 구현 하였다(Samanta, 2004). <표 3>은 필터를 사용한 후의 ANFIS 를 이용한 고장 진단 결과를 보여준다 평균 고장 진단 성공

률이 67.5%인데, 필터를 사용하지 않은 경우와 별로 다르지 않다. 이번에는 <그림 4>에 나와 있는 3가지 타입의 DAG-SVM 에 필터를 적용하였고, 결과를 표 4에 나타내었다. <표 4>의 결과는 700RPM, 1000RPM, 1300RPM와 1450RPM 조건에서 의 데이터를 모두 사용한 결과이다. SVM 고장 진단의 경우, 필터를 사용할 경우 고장 진단 성공률이 높게 증가한 것을 발 견하였다. DAG-SVM 타입 3의 경우 90%의 고장 진단 성공률 을 보인다.

<표 3> 필터 사용 후 ANFIS 고장 진단 결과

	고장 진단 성공률(%)
I _{1y} & O _{3y} 700RPM	75
I_{1y} & O_{3y} 1000RPM	70
I _{1y} & O _{3y} 1300RPM	55
I _{1y} & O _{3y} 1450RPM	70
평균	67.5

<표 4> 필터 사용 후 SVM 고장 진단 결과

	고장 진단 성공률(%)
SVM diagnosis type 1	81.25
SVM diagnosis type 3	90
SVM diagnosis type 4	78.95

4. 결론 및 토의

풍력발전기의 서로 다른 고장 상태를 모사할 수 있는 시험 장치를 개발하였다. 700, 1000, 1300과 1400 RPM의 4가지 회 전 속도를 5가지 고장 상태(정상 상태, 균열 1mm, 균열 2mm, 균열 6mm, 기아 이 결함)로 실험하였다. 제곱평균, 분산, 첨 도와 6차 중심 적률을 특성치 세트로 선택하였는데, 제곱평 균과 분산은 정상상태, 균열 1mm, 균열 2mm와 균열 6mm 상 태를 구별해주었지만 기아 이 결함 상태를 구별해주지 못했다. 하지만 첨도와 6차 중심 적률의 경우 기아 이 결함 상태를 구 별해주었다.

ANFIS 방법을 사용했을 때보다 DAG-SVM 방법을 사용했 을 때 전반적으로 고장 진단 성공률이 높게 나왔고, 특히 하 이 패스 필터를 사용할 때 두드러졌다. <그림 5>는 이 현상을 설명하기 위한 간단한 그림이다. x축이 서로 다른 고장 상태 를 나타내고 y축이 특성치의 값을 나타낸다. 파란색 점은 ANFIS와 DAG-SVM를 훈련시키기 위해 사용한 데이터를 나 타낸다. ANFIS의 경우 모든 고장 진단 대상 데이터를 한꺼번 에 입력하고 <그림 5>에서의 검은색 곡선과 같이 모든 경우 를 잘 설명할 수 있는 추측선을 찾는다. 모든 훈련 데이터를 동시에 다루기 때문에 <그림 5>의 x축 값 4와 같은 오버 피팅 문제가 발생할 수밖에 없으며, 또한 y축 값이 4로 주어졌을 때 이것을 어떤 고장 상태(x축 값)로 진단을 할 지 결정하기 어렵게 된다. 반대로 DAG-SVM의 경우에는 <그림 5>의 파란 색 선과 빨간색 선과 같이 주어진 데이터를 두 개의 그룹으로 나누어서 분석할 수 있는데, 이를 통해서 더 나은 고장 진단 결과를 만들어 내는 것이다.

<그림 5> ANFIS와 DAG-SVM 비교

참고문헌

- Abbasion, S., Rafsanjani, A. and Farshidianfar, A. (2007), Rolling element bearings multi-fault pattern recognition based on the wavelet denoising and support vector machine, *Mechanical Systems and Signal Processing*, Vol. 21, pp. 2933-2945.
- [2] Altmann, J. and Mathew, J. (2001), Multiple band-pass autoregressive demodulation for rolling-element bearing fault diagnosis, *Mechanical Systems and Signal Processing*, Vol. 15, No. 5, pp. 963-977.
- [3] Amirat, Y., Benbouzid, M. E. H., Bensaker, B., and Wamkeue, R. (2007), Condition monitoring and fault diagnosis in wind energy conversion systems: a review, *In Proceedings* of *IEEE International Electric Machines and Drives Conference*, Vol. 2, pp. 1434-1439.
- [4] Bredensteinerl, E. J. and Bennett, K. P. (1999), Multi-class pattern recognition by support vector machine, *Computational Optimization and Applications*, Vol. 12, pp. 53-79.
- [5] Hameed, Z., Hong, Y. S., Cho, Y. M., Ahn, S. H. and Song, C. K. (2009), Condition monitoring and fault detection of wind turbines and related algorithms: a review, *Renewable and Sustainable Energy Reviews*, Vol. 13, No. 1, pp. 1-39.

- [6] Hsu, C. W. and Lin, C. J. (2002), A comparison of methods for multi-class Support Vector Machines, *IEEE Transactions* on Neural Networks (2nd Edition), Vol. 13, pp. 415-425.
- [7] Hyers, R. W., McGowan, J. C., Sullivan, K. L., Manwell, J. F. and Syrett, B. C. (2006), Condition monitoring and prognosis of utility scale wind turbines, *Energy Materials*, Vol. 1, No. 3, pp. 187-203.
- [8] Jang, J.-S. R. (1993), ANFIS: adaptive-network-based fuzzy inference systems, *IEEE Transactions on Systems, Man,* and Cybernetics, Vol. 23, No. 3, pp. 665-685.
- [9] Lin, D. T. and Pan, D. C. (2009), Integrating a mixed-feature model and multi-class support vector machine for facial expression recognition, *Integrated Computer-aided Engineering*, Vol. 16, No. 1, pp. 61-74.
- [10] Pasha, M. F. and Budtarto, R. (2006), Evolvable-NEURALbased fuzzy inference system and its application for adaptive network anomaly detection, *Advances in machine learning and cybernetics*, Vol. 3930, pp. 662-671.
- [11] Platt, J. C., Cristianini, N., and Shawe-Taylor, J. (2000), Large margin DAG's for multiclass classification, Advances in Neural Information Processing Systems, Vol. 12, pp. 547-553.
- [12] Samanta, B. (2004), Gear fault detection using artificial neural networks and support vector machines with genetic algorithms, *Mechanical Systems and Signal Processing*, Vol. 18, No. 3, pp. 625-644.
- [13] Vapnik, W. N. (1999), An overview of statistical learning theory, *IEEE Transactions of Neural Networks*, Vol. 10, pp. 988-999.
- [14] Walford, C. A. (2006), Wind turbine reliability: understanding and minimizing wind turbine operation and maintenance costs, *Sandia National Laboratories*, Rep. SAND 2006-1100.
- [15] World Wind Energy Association. [Online]. Available: http://www.wwindea.org/home/index.php.
- [16] Xiang, X. Q., Zhou, J. Z., and An, X. L. (2008), Fault diagnosis based on Walsh transform and support vector machine, *Mechanical Systems and Signal Processing*, Vol. 22, No.7, pp. 1685-1693.
- [17] Zhang, Z. S., Shen, M. H. and Lv, W. Z. (2005), Multi-fault classifier based on support vector machine and its application, *Damage Assessment of Structures VI*, pp. 483-489.