• Title/Summary/Keyword: Various CM Applications

Search Result 183, Processing Time 0.038 seconds

Polypyrrole-Coated Woven Fabric as a Flexible Surface-Heating Element

  • Lee, Jun-Young;Park, Dong-Won;Lim, Jeong-Ok
    • Macromolecular Research
    • /
    • v.11 no.6
    • /
    • pp.481-487
    • /
    • 2003
  • Polypyrrole (PPy) was coated sequentially by chemical and electrochemical methods on a woven fabric, giving rise to a fabric having high electrical conductivity. We investigated the effects of the preparation conditions on the various properties of the resulting fabric. The PPy-coated fabric with optimum properties was obtained when it was prepared sequentially by chemical polymerization at the elevated temperature of 100$^{\circ}C$ under a pressure of 0.9 kgf/$\textrm{cm}^2$ and then electrochemical polymerization with a 3.06 mA/$\textrm{cm}^2$ current density at 25 $^{\circ}C$ for 2 hrs with the separator plate. The surface resistivity of the resulting fabric was as low as 5 Ω/$\square$ .The PPy-coated fabric prepared under the optimum conditions showed practically applicable heat generating property. When electrical power was supplied to the fabric using a commercial battery for a mobile phone (3.6 V, LGLl-AHM), the temperature of the fabric increased very quickly from room temperature to ca. 55 $^{\circ}C$ within 2 min and was maintained for ca. 80 min at that temperature. The heat generating property of the fabric was extremely stable, exhibiting similar behavior over 10 repeated cycles. Therefore, we suggest that the PPy-coated fabric in this study may be practically useful for many applications, including flexible, portable surface-heating elements for medical or other applications.

Development of Superconducting Bulk for Superconductor Mortor (초전도모터 적용을 위한 벌크개발)

  • Lee, Sang-Heon
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1311_1312
    • /
    • 2009
  • In this article, current state of development of energy storage system using superconductor was summarized. As a result of continuous efforts, high critical current density exceeding $10^4\;A/cm^3$ at 77K and strong levitation capacity have been achieved in Y-Ba-Cu-O superconductor which is fabricated by melting technique. Various applications using the levitation properties of high-Tc superconductor is expected to come true in near future.

  • PDF

4H-SiC(0001) Epilayer Growth and Electrical Property of Schottky Diode (4H-SiC(0001) Epilayer 성장 및 쇼트키 다이오드의 전기적 특성)

  • Park, Chi-Kwon;Lee, Won-Jae;Nishino Shigehiro;Shin, Byoung-Chul
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.4
    • /
    • pp.344-349
    • /
    • 2006
  • A sublimation epitaxial method, referred to as the Closed Space Technique (CST) was adopted to produce thick SiC epitaxial layers for power device applications. We aimed to systematically investigate the dependence of SiC epilayer quality and growth rate during the sublimation growth using the CST method on various process parameters such as the growth temperature and working pressure. The etched surface of a SiC epitaxial layer grown with low growth rate $(30{\mu}m/h)$ exhibited low etch pit density (EPD) of ${\sim}2000/cm^2$ and a low micropipe density (MPD) of $2/cm^2$. The etched surface of a SiC epitaxial layer grown with high growth rate (above $100{\mu}m/h$) contained a high EPD of ${\sim}3500/cm^2$ and a high MPD of ${\sim}500/cm^2$, which indicates that high growth rate aids the formation of dislocations and micropipes in the epitaxial layer. We also investigated the Schottky barrier diode (SBD) characteristics including a carrier density and depletion layer for Ni/SiC structure and finally proposed a MESFET device fabricated by using selective epilayer process.

Integrity Metadata Based of Multi CMSs System Providing Protection Copyright of Web Contents (웹 콘텐츠 저작권 보호를 제공하는 통합 메타데이터 기반의 다중 CMS 시스템)

  • Cho, Young-Bok;Li, Yong-Zhen;Sun, Ning;Lee, Sang-Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.6C
    • /
    • pp.520-528
    • /
    • 2008
  • At present Content Management Systems (CMS) with various and diverse web contents have been in wide applications. But, for CMS of each enterprise has its own metadata which is very different from others, it causes the serious problem of web contents repetition. Also, it's a difficult technology to support protecting copyright of web contents which are in separated CMSs. Therefore, in this paper, we solved the problem of contents repetition through metadata integration between mutually heterogeneous CMSs. We also propose the technology of web contents authentication code for avoiding contents repetition and applying digital rights protection by supporting safe ship in vast quantity of contents.

Physical and γ-ray shielding properties of Vietnam's natural stones: An extensive experimental and theoretical study

  • Ta Van Thuong;O.L. Tashlykov;A.M. Shironina;I.P. Voronin;E.V. Kuvshinova;D.O. Pyltsova;E.I. Nazarov;K.A. Mahmoud
    • Nuclear Engineering and Technology
    • /
    • v.56 no.5
    • /
    • pp.1932-1940
    • /
    • 2024
  • The current work deals with investigation of the gamma ray shielding properties for various natural stones from Vietnam to be applied in the radiation shielding applications. The physical and chemical properties affecting the γ-ray shielding performance were examined. The MH-300A density meter was utilized to measure the density (ρ, g/cm3) of stone samples, as well as the chemical composition of Vietnamese natural stones was measured using the X-ray fluorescence analyzer (Olympus X-5000). The study shows that the increase in Fe + Ca concentrations within the stone samples increases their density (from 2.48 to 2.86 g/cm3) accompanied with a reduction in the porosity (Φ, %) (from 8.23 to 0.15%) and water absorption (K, %) (from 3.42 to 0.05%) factors. Additionally, the increase in Fe + Ca concentrations increases the linear attenuation coefficient (μ, cm-1) of the studied stones, where the Vietnamese marble stone (M 3.1) with the highest Fe + Ca concentration (65.97 wt%) has the highest linear attenuation coefficient which varied between 3.781 and 0.155 cm-1 with raising the gamma ray energy between 0.040 and 1.332 MeV.

Effects of Gibberellin and Atonic Acid on Growth and Fiber Yield of Ramie Plant (식물생장조절자의 처리가 모시풀의 생육 및 섬유수량에 미치는 영향)

  • 정동희;김상곤;권병선;황종진
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.38 no.3
    • /
    • pp.213-218
    • /
    • 1993
  • An experiment was carried out to investigate the effects of plant growth regulators on the growth and fiber yield of ramie. Gibberellin (GA) and Atonic acid were applied at the various levels of application dates, application frequencies and concentration. Stem growth of ramie increased greatly by applying GA on the meristem of shoot apex. Among three treatments of application frequencies of GA, that is, one time application at the stage of stem length with 50cm, twice applications at the stem length of 50cm and 100cm, and three times applications at stem length of 50cm, 100cm and 150cm, stem growth increased more as application frequency increased. GA application is more effective on stem growth at the later stage of growth than the earlier growth stage. GA treatment of 100 to 300 ppm is more effective on stem elongation than 50 ppm, which was due on the elongation of internodes without increase in number of nodes. One time application of GA enhanced leaf growth more or less regardless of concentration, but GA was applied more frequently, leaf growth was inhibited more at higher concentration. Fiber yield was the highest at the treatment of three times application of GA with 100 ppm. This treatment also showed the highest percentage of fiber with 5.3%, which is much higher value compared with that of control treatment with 4.6%. Atonic acid was less effective on stem elongation than GA, but it also seemed to be effective on the enhancement of fiber development.

  • PDF

VRS-based Precision Positioning using Civilian GPS Code Measurements (가상기준점 기반 코드신호를 이용한 정밀 측위)

  • Bae, Tae-Suk
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.29 no.2
    • /
    • pp.201-208
    • /
    • 2011
  • With the increase in the number of smartphone users, precise 3D positional information is required by various applications. The positioning accuracy using civilian single-frequency pseudoranges is at the level of 10 m or so, but most applications these days are asking for a sub-meter level Therefore, instead of an absolute positioning technique, the VRS-based differential approach is applied along with the correction of the double-differenced (DD) residual errors using FKP (Flachen-Korrektur-Parameter). The VRS (Virual Reference Station) is located close to the rover, and the measurements are generated by correcting the geometrical distance to those of the master reference station. Since the unmodeled errors are generally proportional to the length of the baselines, the correction parameters are estimated by fitting a plane to the DD pseudorange errors of the CORS network. The DD positioning accuracy using 24 hours of C/A code measurements provides the RMS errors of 37 cm, 28 cm for latitudinal and longitudinal direction, respectively, and 76 cm for height. The accuracy of the horizontal components is within ${\pm}0.5m$ for about 90% of total epochs, and in particular the biases are significantly decreased to the level of 2-3 cm due to the network-based error modeling. Consequently, it is possible to consistently achieve a sub-meter level accuracy from the single-frequency pseudoranges using the VRS and double-differenced error modeling.

Epitaxial Structure Optimization for High Brightness InGaN Light Emitting Diodes by Using a Self-consistent Finite Element Method

  • Kim, Kyung-Soo;Yi, Jong Chang
    • Journal of the Optical Society of Korea
    • /
    • v.16 no.3
    • /
    • pp.292-298
    • /
    • 2012
  • The epitaxial layer structures for blue InGaN light emitting diodes have been optimized for high brightness applications with the output power levels exceeding 1000 $W/cm^2$ by using a self-consistent finite element method. The light-current-voltage relationship has been directly estimated from the multiband Hamiltonian for wurtzite crystals. To analyze the efficiency droop at high injection levels, the major nonradiative recombination processes and carrier spillover have also been taken into account. The wall-plug efficiency at high injection levels up to several thousand $A/cm^2$ has been successfully evaluated for various epilayer structures facilitating optimization of the epitaxial structures for desired output power levels.

Design Parameter Optimization for Hall Sensor Application

  • Park, Chang-Sung;Cha, Gi-Ho;Kang, Hyun-Soon;Song, Chang-Sup
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.86.3-86
    • /
    • 2001
  • Hall effect sensor using 7um, 1.7 ohm-cm or 10um, 3.5 ohm-cm Bipolar process was successfully developed. The Hall sensor consists of various patterns, such as regular shapes, rectangles, diamond, hexagon and cross shapes to optimize offset voltage and sensitivity for proper applications. In order to measure offset voltage in chip scale the Agilent company´s 4156C and Nano-Voltage Meter were used and the best structure in offset voltage was finally selected by using ceramic package. The patterns appear to be the quadri-rectangular patterns entirely and three-parallelogram patterns. The measured offset voltages were found to be about 173-365uV. Meanwhile, in ...

  • PDF

Ambient Light Backscatter Communication for IoT Applications

  • Yun, Jisu;Jang, Byung-Jun
    • Journal of electromagnetic engineering and science
    • /
    • v.16 no.4
    • /
    • pp.214-218
    • /
    • 2016
  • In this paper, we present an ambient light backscatter communication design that enables Internet of Things (IoT) devices to communicate through the backscattering ambient light emitted from lighting infrastructure or sunlight. The device can selectively modulate ambient light by switching a liquid crystal display (LCD) shutter located on its surface, so that a nearby smart device, which includes a photodiode or a camera, can demodulate this backscattered light information. To verify the practicality of the proposed concept, we design an IoT device equipped with a commercial LCD shutter and a microcontroller. Our device produces ambient light backscattered data at a speed of 100 bps, and these data are successfully decoded by a commercial photodiode module 10 cm away from the IoT device. We believe that our ambient light backscatter communication design is appropriate for implementation in various IoT applications.