DOI QR코드

DOI QR Code

Physical and γ-ray shielding properties of Vietnam's natural stones: An extensive experimental and theoretical study

  • Ta Van Thuong (Ural Federal University) ;
  • O.L. Tashlykov (Ural Federal University) ;
  • A.M. Shironina (Ural Federal University) ;
  • I.P. Voronin (Ural Federal University) ;
  • E.V. Kuvshinova (Ural Federal University) ;
  • D.O. Pyltsova (Ural Federal University) ;
  • E.I. Nazarov (Ural Federal University) ;
  • K.A. Mahmoud (Ural Federal University)
  • Received : 2024.02.13
  • Accepted : 2024.03.11
  • Published : 2024.05.25

Abstract

The current work deals with investigation of the gamma ray shielding properties for various natural stones from Vietnam to be applied in the radiation shielding applications. The physical and chemical properties affecting the γ-ray shielding performance were examined. The MH-300A density meter was utilized to measure the density (ρ, g/cm3) of stone samples, as well as the chemical composition of Vietnamese natural stones was measured using the X-ray fluorescence analyzer (Olympus X-5000). The study shows that the increase in Fe + Ca concentrations within the stone samples increases their density (from 2.48 to 2.86 g/cm3) accompanied with a reduction in the porosity (Φ, %) (from 8.23 to 0.15%) and water absorption (K, %) (from 3.42 to 0.05%) factors. Additionally, the increase in Fe + Ca concentrations increases the linear attenuation coefficient (μ, cm-1) of the studied stones, where the Vietnamese marble stone (M 3.1) with the highest Fe + Ca concentration (65.97 wt%) has the highest linear attenuation coefficient which varied between 3.781 and 0.155 cm-1 with raising the gamma ray energy between 0.040 and 1.332 MeV.

Keywords

Acknowledgement

The authors would like to acknowledge the Researchers Supporting Project of the Ural Federal University (UrFU, Yekaterinburg, Russia).

References

  1. Y.V. Nosov, A.V. Rovneiko, O.L. Tashlykov, S.E. Shcheklein, Decommissioning features of BN-350, -600 fast reactors, Atom. Energy 125 (2019) 4 219-223, https://doi.org/10.1007/s10512-019-00470-z.
  2. O.L. Tashlykov, A.P. Khomyakov, S. Mordanov, V.P. Remez, Ion-selective treatment as a method for increasing the efficiency of liquid radioactive waste reducing in accordance with acceptance criteria for disposal, AIP Conf. Proc. 2388 (1) (2021) 020032, https://doi.org/10.1063/5.0068413.
  3. A.F. Mikhailova, O.L. Tashlykov, The ways of implementation of the optimization principle in the personnel radiological protection, Phys. Atom. Nucl. 83 (2020) 1718-1726, https://doi.org/10.1134/S1063778820100154.
  4. V.P. Mashkovich, A.V. Kudryavtseva, Protection against Ionizing Radiation, 1995, p. 450.
  5. Y.A. Kropachev, O.L. Tashlykov, S.E. Shcheklein, Optimization of radiation protection at the stage of nuclear power plant units decommissioning, Izv. Vuzov Yad. Energ. 1 (2019) 119-130, https://doi.org/10.26583/npe.2019.1.11.
  6. O.L. Tashlykov, A.N. Sesekin, A.G. Chentsov, A.A. Chentsov, Development of methods for route optimization of work in inhomogeneous radiation fields to minimize the dose load of personnel, Energies 15 (2022) 4788, https://doi.org/10.3390/en15134788.
  7. O.L. Tashlykov, A.M. Grigoryev, Y.A. Kropachev, Reducing the exposure dose by optimizing the route of personnel movement when visiting specified points and taking into account the avoidance of obstacles, Energies 15 (2022) 8222, https://doi.org/10.3390/en15218222.
  8. M.A. Khalaf, C.C. Ban, M. Ramli, The constituents, properties and application of heavyweight concrete: a review, Construct. Build. Mater. 215 (2019) 73-89, https://doi.org/10.1016/j.conbuildmat.2019.04.146.
  9. Md Safiuddin, A. Kaish, C.-O. Woon, S. Raman, Early-age cracking in concrete: causes, consequences, remedial measures, and recommendations, Appl. Sci. 8 (2018) 1730, https://doi.org/10.3390/app8101730.
  10. R.S. Aita, K.A. Mahmoud, H.A.A. Ghany, E.M. Ibrahim, M.G. El-Feky, I.E. El Aassy, Impacts of Siltstone Rocks on the Ordinary Concrete's Physical, Mechanical and Gamma-Ray Shielding Properties: an Experimental Examination, Nuclear Engineering and Technology, 2024, https://doi.org/10.1016/j.net.2024.01.014.
  11. M.K.A. Roslan, M. Ismail, A.B.H. Kueh, M.R.M. Zin, High-density concrete: exploring Ferro boron effects in neutron and gamma radiation shielding, Construct. Build. Mater. 215 (2019) 718-725, https://doi.org/10.1016/j.conbuildmat.2019.04.105.
  12. K.G. Mahmoud, M.S. Alqahtani, O.L. Tashlykov, V.S. Semenishchev, M.Y. Hanfi, The influence of heavy metallic wastes on the physical properties and gamma-ray shielding performance of ordinary concrete: experimental evaluations, Radiat. Phys. Chem. 206 (2023) 110793, https://doi.org/10.1016/j.radphyschem.2023.110793.
  13. Esraa K. Ahmed, Habiba M. Mahran, M.F. Alrashdi, Elsafi Mohamed, Studying the shielding ability of different cement mortars against gamma ray sources using waste iron and BaO microparticles, Nexus Future Mater. 1 (2024) 1-5. https://nfmjournal.com/articles/3.
  14. B. Oto, N. Yildiz, F. Akdemir, E. Kavaz, Investigation of gamma radiation shielding properties of various ores, Prog. Nucl. Energy 85 (2015) 391-403, https://doi.org/10.1016/j.pnucene.2015.07.016.
  15. S. Parirenyatwa, L. Escudero-Castejon, S. Sanchez-Segado, Y. Hara, A. Jha, Comparative study of alkali roasting and leaching of chromite ores and titaniferous minerals, Hydrometallurgy 165 (2016) 213-226, https://doi.org/10.1016/j.hydromet.2015.08.002.
  16. T. Korkut, A. Karabulut, G. Budak, B. Aygun, O. Gencel, A. Hancerliogullari, Investigation of neutron shielding properties depending on number of boron atoms for colemanite, ulexite and tincal ores by experiments and FLUKA Monte Carlo simulations, Appl. Radiat. Isot. 70 (2012) 341-345, https://doi.org/10.1016/j.apradiso.2011.09.006.
  17. R.S. Aita, H.A. Abdel Ghany, E.M. Ibrahim, M.G. El-Feky, I.E. El Aassy, K. A. Mahmoud, Gamma-rays attenuation by mineralized siltstone and dolostone rocks: Monte Carlo simulation, theoretical and experimental evaluations, Radiat. Phys. Chem. 198 (2022), https://doi.org/10.1016/j.radphyschem.2022.110281.
  18. S.S. Obaid, D.K. Gaikwad, P.P. Pawar, Determination of gamma ray shielding parameters of rocks and concrete, Radiat. Phys. Chem. 144 (2018) 356-360, https://doi.org/10.1016/j.radphyschem.2017.09.022.
  19. S.S. Obaid, M.I. Sayyed, D.K. Gaikwad, P.P. Pawar, Attenuation coefficients and exposure buildup factor of some rocks for gamma ray shielding applications, Radiat. Phys. Chem. 148 (2018) 86-94, https://doi.org/10.1016/j.radphyschem.2018.02.026.
  20. M.D. Ali, R.M. Akhtar, A. K, S. M, B. V, V.S.R. D, N.C. S, Mafic and ultramafic rocks in parts of the Bhavani complex, Tamil Nadu, Southern India: geochemistry constraints, J. Geol. Min. Res. 6 (2014) 18-27, https://doi.org/10.5897/jgmr14.0197.
  21. K.A. Mahmoud, M.I. Sayyed, O.L. Tashlykov, Gamma ray shielding characteristics and exposure buildup factor for some natural rocks using MCNP-5 code, Nucl. Eng. Technol. 51 (2019), https://doi.org/10.1016/j.net.2019.05.013.
  22. A. Mansour, M.I. Sayyed, K.A. Mahmoud, E. S, akar, E.G. Kovaleva, Modified halloysite minerals for radiation shielding purposes, J. Radiat. Res.. Appl. Sci. 13 (2020) 94-101, https://doi.org/10.1080/16878507.2019.1699680.
  23. H. Baltas, M. Sirin, A. Celik, ˙ I. Ustabas, A.M. El-Khayatt, Radiation shielding properties of mortars with minerals and ores additives, Cem. Concr. Compos. 97 (2019) 268-278, https://doi.org/10.1016/j.cemconcomp.2019.01.006.
  24. M.S. Al-Buriahi, M. Rashad, Amani Alalawi, M.I. Sayyed, Effect of Bi2O3 on mechanical features and radiation shielding properties of boro-tellurite glass system, Ceram. Int. 46 (2020) 16452-16458, https://doi.org/10.1016/j.ceramint.2020.03.208.
  25. Qiuling Chen, K.A. Naseer, K. Marimuthu, P. Suthanthira Kumar, Baoji Miao, K. A. Mahmoud, M.I. Sayyed, Influence of modifier oxide on the structural and radiation shielding features of Sm3+-doped calcium telluro-fluoroborate glass systems, J. Australian Ceramic Soc. 57 (2021) 275-286, https://doi.org/10.1007/s41779-020-00531-8.
  26. I. Boukhris, I. Kebaili, M.S. Al-Buriahi, M.I. Sayyed, Radiation shielding properties of tellurite-lead-tungsten glasses against gamma and beta radiations, J. Non-Cryst. Solids 551 (2021) 120430, https://doi.org/10.1016/j.jnoncrysol.2020.120430.
  27. A. As,kin, M.I. Sayyed, Amandeep Sharma, M. Dal, R. El-Mallawany, M.R. Kacal, Investigation of the gamma ray shielding parameters of (100-x) [0.5Li2O-0.1B2O3-0.4P2O5]-xTeO2 glasses using Geant4 and FLUKA codes, J. NonCryst. Solids 521 (2019) 119489, https://doi.org/10.1016/j.jnoncrysol.2019.119489.
  28. B. Albarzan, M.Y. Hanfi, A.H. Almuqrin, M.I. Sayyed, H.M. Alsafi, K.A. Mahmoud, The influence of titanium dioxide on silicate-based glasses: an evaluation of the mechanical and radiation shielding properties, Materials 14 (2021), https://doi.org/10.3390/ma14123414.
  29. A.A. Rotkovich, D.I. Tishkevich, S.A. German, A.A. Bondaruk, E.S. Dashkevich, A. V. Trukhanov, A study of the morphological, structural, and shielding properties of epoxy-W composite materials, Nexus Future Mater. 1 (2024) 13-19. https://nfmjournal.com/articles/5.
  30. M.N. Vishnu Narayanan Namboothiri, K.A. Naseer, K. Marimuthu, N. Almousa, M. I. Sayyed, Sm3+-Doped alumino borophospho-silicate glasses: an examination of the optical, structural, and gamma-ray protective features, Silicon 15 (2023) 7797-7810, https://doi.org/10.1007/s12633-023-02620-2.
  31. R. Divina, G. Sathiyapriya, K. Marimuthu, A. Askin, M.I. Sayyed, Structural, elastic, optical and γ-ray shielding behavior of Dy3+ ions doped heavy metal incorporated borate glasses, J. Non-Cryst. Solids 545 (2020) 120269, https://doi.org/10.1016/j.jnoncrysol.2020.120269.
  32. M.H.A. Mhareb, Y.S.M. Alajerami, M.I. Sayyed, Nidal Dwaikat, Muna Alqahtani, Fatimh Alshahri, Noha Saleh, N. Alonizan, Taher Ghrib, Sarah Ibrahim Al-Dhafar, Radiation shielding, structural, physical, and optical properties for a series of borosilicate glass, J. Non-Cryst. Solids 550 (2020) 120360, https://doi.org/10.1016/j.jnoncrysol.2020.120360.
  33. M.H.A. Mhareb, Muna Alqahtani, Fatimh Alshahri, Y.S.M. Alajerami, Noha Saleh, N. Alonizan, M.I. Sayyed, M.G.B. Ashiq, Taher Ghrib, Sarah Ibrahim Al-Dhafar, Tasneem Alayed, Mohamed A. Morsyh, The impact of barium oxide on physical, structural, optical, and shielding features of sodium zinc borate glass, J. Non-Cryst. Solids 541 (2020) 120090, https://doi.org/10.1016/j.jnoncrysol.2020.120090.
  34. G. Kilic, E. Ilik, K.A. Mahmoud, F.I. El-Agawany, Sultan Alomairy, Y.S. Rammah, The role of B2O3 on the structural, thermal, and radiation protection efficacy of vanadium phosphate glasses, Appl. Phys. A 127 (2021) 265, https://doi.org/10.1007/s00339-021-04409-9.
  35. Ta Van Thuong, O.L. Tashlykov, Pham Khac Tuyen, Preparation of guidance on the appraisal of the environmental impact assessment report for the center for nuclear science and technology of Vietnam, E3S Web Conf. 389 (2023) 09057, https://doi.org/10.1051/e3sconf/202338909057UESF-2023.
  36. Ta Van Thuong, O.L. Tashlykov, S.M. Glukhov, D.E. Shumkov, Y. Volchikhina, Experimental and theoretical justification of passive heat removal system for irradiated fuel assemblies of the nuclear research reactor in a spent fuel pool, Nucl. Eng. Technol. 55 (2023) 2088-2095, https://doi.org/10.1016/j.net.2023.02.028.
  37. Ta Van Thuong, O.L. Tashlykov, K.A. Mahmoud, Lightweight bricks based Vietnamese red clay for radiation protection: a deep look for the impacts of compressive strength on the characterization, and gamma ray shielding evaluation, Radiat. Phys. Chem. 218 (2024) 111583, https://doi.org/10.1016/j.radphyschem.2024.111583.
  38. Ta Van Thuong, O.L. Tashlykov, K.A. Mahmoud, Novel bricks based lightweight Vietnam's white clay minerals for gamma ray shielding purposes: an extensive experimental study, Nucl. Eng. Technol. 56 (2024) 666-672, https://doi.org/10.1016/j.net.2023.11.002.
  39. Ta Van Thuong, O.L. Tashlykov, K.A. Mahmoud, A unique Vietnam's red clay-based brick reinforced with metallic wastes for γ-ray shielding purposes: fabrication, characterization, and γ-ray attenuation properties, Nucl. Eng. Technol. (2024), https://doi.org/10.1016/j.net.2024.02.003.
  40. E.P. Kearsley, P.J. Wainwright, Porosity and permeability of foamed concrete, Cement Concr. Res. 31 (2001) 805-812, https://doi.org/10.1016/S0008-8846(01)00490-2.
  41. I. Akkurt, S. Kilincarslan, C. Basyigit, The photon attenuation coefficients of barite, marble and limra, Ann. Nucl. Energy 31 (2004) 577-582, https://doi.org/10.1016/j.anucene.2003.07.002.
  42. I. Akkurt, H. Akyildirim, Radiation transmission of concrete including pumice for 662, 1173 and 1332keV gamma rays, Nucl. Eng. Des. 252 (2012) 163-166, https://doi.org/10.1016/j.nucengdes.2012.07.008.
  43. X-5 Monte Carlo Team, MCNP - A General Monte Carlo N-Particle Transport Code, 2003. La-Ur-03-1987 II, Version 5.
  44. E. Hannachi, M.I. Sayyed, Y. Slimani, K.G. Mahmoud, Synthesis of pristine CaZrO3 and CaZrO3/Pr6O11 ceramic samples and assessment of their radiation protection features, J. Phys. Chem. Solid. 181 (2023) 111498, https://doi.org/10.1016/j.jpcs.2023.111498.
  45. M.I. Sayyed, K.A. Mahmoud, F.Q. Mohammed, K.M. Kaky, A Comprehensive Evaluation of Mg-Ni Based Alloys Radiation Shielding Features for Nuclear Protection Applications, Nuclear Engineering and Technology, 2023, https://doi.org/10.1016/j.net.2023.12.040.
  46. I.F. Al-Hamarneh, Investigation of gamma-ray shielding effectiveness of natural marble used for external wall cladding of buildings in Riyadh, Saudi Arabia, Results Phys. 7 (2017) 1792-1798, https://doi.org/10.1016/j.rinp.2017.05.017.
  47. L.A. Najam, A.K. Hashim, H.A. Ahmed, I.M. Hassan, Study the attenuation coefficient of granite to use it as shields against gamma ray, Detection 4 (2016) 33-39, https://doi.org/10.4236/detection.2016.42005.
  48. B. Mavi, Experimental investigation of γ-ray attenuation coefficients for granites, Ann. Nucl. Energy 44 (2012) 22-25, https://doi.org/10.1016/j.anucene.2012.01.009.