• 제목/요약/키워드: Variational form

검색결과 94건 처리시간 0.022초

ON EXISTENCE OF WEAK SOLUTIONS OF NEUMANN PROBLEM FOR QUASILINEAR ELLIPTIC EQUATIONS INVOLVING p-LAPLACIAN IN AN UNBOUNDED DOMAIN

  • Hang, Trinh Thi Minh;Toan, Hoang Quoc
    • 대한수학회보
    • /
    • 제48권6호
    • /
    • pp.1169-1182
    • /
    • 2011
  • In this paper we study the existence of non-trivial weak solutions of the Neumann problem for quasilinear elliptic equations in the form $$-div(h(x){\mid}{\nabla}u{\mid}^{p-2}{\nabla}u)+b(x){\mid}u{\mid}^{p-2}u=f(x,\;u),\;p{\geq}2$$ in an unbounded domain ${\Omega}{\subset}\mathbb{R}^N$, $N{\geq}3$, with sufficiently smooth bounded boundary ${\partial}{\Omega}$, where $h(x){\in}L_{loc}^1(\overline{\Omega})$, $\overline{\Omega}={\Omega}{\cup}{\partial}{\Omega}$, $h(x){\geq}1$ for all $x{\in}{\Omega}$. The proof of main results rely essentially on the arguments of variational method.

Wave Response and Ship Motion in a Harbor Excited by Long Waves

  • Cho, Il-Hyoung;Choi, Hang-S.
    • Selected Papers of The Society of Naval Architects of Korea
    • /
    • 제2권1호
    • /
    • pp.47-62
    • /
    • 1994
  • Herein the surge-heave-pitch motion of a ship in harbor has been analyzed within the framework of linear potential theory. The ship is assumed to be slender and moored at an arbitrary position in a rectangular harbor with a constant depth. The coast line is assumed to be straight. The ship and harbor responses to incident long waves are represented in terms of Green's function, which is the solution of tole Helmholtz equation satisfying necessary boundary conditions. An integral equation is obtained from matching condition between harbor and ocean solutions, and it is replaced by an equivalent variational form. Numerical results sallow that the ship motion can be highly amplified at the frequencies, where the harbor is resonated by the incident wave. At the resonant frequencies, the added mass for vertical motions becomes negative and the damping forte changes abruptly.

  • PDF

On the numerical assessment of the separation zones in semirigid column base plate connections

  • Baniotopoulos, C.C.
    • Structural Engineering and Mechanics
    • /
    • 제2권3호
    • /
    • pp.295-309
    • /
    • 1994
  • The present paper concerns the mathematical study and the numerical treatment of the problem of semirigid connections in bolted steel column base plates by taking into account the possibility of appearance of separation phenomena on the contact surface under certain loading conditions. In order to obtain a convenient discrete form to simulate the structural behaviour of a steel column base plate, the continuous contact problem is first formulated as a variational inequality problem or, equivalently, as a quadratic programming problem. By applying an appropriate finite element scheme, the discrete problem is formulated as a quadratic optimization problem which expresses, from the standpoint of Mechanics, the principle of minimum potential energy of the semirigid connection at the state of equilibrium. For the numerical treatment of this problem, two effective and easy-to-use solution strategies based on quadratic optimization algorithms are proposed. This technique is illustrated by means of a numerical application.

금속분말 압축성형에서의 마찰특성 (Friction Effect on the Powdered Metal Compaction)

  • 장동환;황병복
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1997년도 춘계학술대회논문집
    • /
    • pp.226-230
    • /
    • 1997
  • A plasticity theory applicable to powdered metal compaction is briefly summarized and its variational form for the finite element analysis is described. The compaction processes of axisymmetric solid cylinder are simulated. For the analysis of the friction effect of solid cylinder, the investigations were performed for different compact geometries. Highlights of the results for given geometries are reported in terms of transmitted pressure on the lower punch from the upper punch through the compact and maximum density variation within the compacts. General conclusions from these simulation results are : (1) the friction coefficient could be selected from the transmitted force data during the single acting compaction test with the simulated results ; and (2) density variatioins within the compacts are very much dependent of the compact geometry such as the height to diameter ratio and the frictional condition between compact and dies.

  • PDF

SECOND ORDER TANGENT VECTORS IN RIEMANNIAN GEOMETRY

  • Kwon, Soon-Hak
    • 대한수학회지
    • /
    • 제36권5호
    • /
    • pp.959-1008
    • /
    • 1999
  • This paper considers foundational issues related to connections in the tangent bundle of a manifold. The approach makes use of second order tangent vectors, i.e., vectors tangent to the tangent bundle. The resulting second order tangent bundle has certain properties, above and beyond those of a typical tangent bundle. In particular, it has a natural secondary vector bundle structure and a canonical involution that interchanges the two structures. The involution provides a nice way to understand the torsion of a connection. The latter parts of the paper deal with the Levi-Civita connection of a Riemannian manifold. The idea is to get at the connection by first finding its.spary. This is a second order vector field that encodes the second order differential equation for geodesics. The paper also develops some machinery involving lifts of vector fields form a manifold to its tangent bundle and uses a variational approach to produce the Riemannian spray.

  • PDF

A REVIEW ON DENOISING

  • Jung, Yoon Mo
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제18권2호
    • /
    • pp.143-156
    • /
    • 2014
  • This paper aims to give a quick view on denoising without comprehensive details. Denoising can be understood as removing unwanted parts in signals and images. Noise incorporates intrinsic random fluctuations in the data. Since noise is ubiquitous, denoising methods and models are diverse. Starting from what noise means, we briefly discuss a denoising model as maximum a posteriori estimation and relate it with a variational form or energy model. After that we present a few major branches in image and signal processing; filtering, shrinkage or thresholding, regularization and data adapted methods, although it may not be a general way of classifying denoising methods.

곡면 구조물 통합 설계를 위한 쉘 해석과 곡면 모델링의 연동 개요 (The outline of a Link between Shell Analysis and Surface Modeling for Surface Structural Integrated Design)

  • 노희열;조맹효
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2001년도 가을 학술발표회 논문집
    • /
    • pp.295-302
    • /
    • 2001
  • In the present study, we propose the framework which directly links shell finite element to the surface geometric modeling. For the development of a robust shell element, partial mixed variational functional is provided. The NURBS is used to generate the general free form of parameterized shell surfaces. Employment of NURBS makes shell finite element handle the arbitrary geometry of the smooth shell surfaces. The proposed shell finite element model linked with NURBS surface representation provides efficiency for design and analysis and can be directly extended to surface shape optimization problems in future work.

  • PDF

고차의 무발산 요소를 이용한 비압축성 유동계산 (Computation of Incompressible Flows Using Higher Order Divergence-free Elements)

  • 김진환
    • 한국해양공학회지
    • /
    • 제25권5호
    • /
    • pp.9-14
    • /
    • 2011
  • The divergence-free finite elements introduced in this paper are derived from Hermite functions, which interpolate stream functions. Velocity bases are derived from the curl of the Hermite functions. These velocity basis functions constitute a solenoidal function space, and the gradient of the Hermite functions constitute an irrotational function space. The incompressible Navier-Stokes equation is orthogonally decomposed into its solenoidal and irrotational parts, and the decoupled Navier-Stokes equations are then projected onto their corresponding spaces to form appropriate variational formulations. The degrees of the Hermite functions we introduce in this paper are bi-cubis, quartic, and quintic. To verify the accuracy and convergence of the present method, three well-known benchmark problems are chosen. These are lid-driven cavity flow, flow over a backward facing step, and buoyancy-driven flow within a square enclosure. The numerical results show good agreement with the previously published results in all cases.

일반적인 곡선좌표계에 기초한 복합재료 적층쉘의 유한요소 해석 (Finite Element of Composite Shells Based on General Curvilinear Coordinates)

  • 노희열;조맹효
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2000년도 추계학술발표대회 논문집
    • /
    • pp.173-176
    • /
    • 2000
  • Finite element model based on the Naghdi's shell theory in the general tensor-based form is formulated in the present study. Partial mixed variational functional for assumed strain is formulated in order to avoid the severe locking troubles known as transverse shear and membrane locking. The proposed assumed strain element in general tensor Naghdi's shell model provides very accurate solutions for thin shells in benchmark problems. In additions, linear elastic constitutive equations are given in the general curvilinear coordinate system including anisotropic layered structures. Thus laminated composited shell structures are easily analyzed in the present formulation.

  • PDF

An efficient Galerkin meshfree analysis of shear deformable cylindrical panels

  • Wang, Dongdong;Wu, Youcai
    • Interaction and multiscale mechanics
    • /
    • 제1권3호
    • /
    • pp.339-355
    • /
    • 2008
  • A Galerkin meshfree method is presented for analyzing shear deformable cylindrical panels. Based upon the analogy between the cylindrical panel and the curved beam a pure bending mode for cylindrical panel is rationally constructed. The meshfree approximation employed herein is characterized by an enhanced moving least square or reproducing kernel basis function that can exactly represent the pure bending mode and thus meets the requirement of Kirchhoff mode reproducing condition. The variational form is discretized using the efficient stabilized conforming nodal integration with a smoothed nodal gradient based curvature. The resulting meshfree formulation satisfies the integration constraint for bending exactness. Moreover, it is shown here that the smoothed gradient preserves several desired properties which are valid for the standard gradient obtained by direct differentiation, such as partition of nullity and reproduction of a constant strain field. The efficacy of the proposed approach is demonstrated by two benchmark cylindrical panel examples.