• Title/Summary/Keyword: Variational form

Search Result 95, Processing Time 0.018 seconds

GENERALIZED BI-QUASI-VARIATIONAL INEQUALITIES FOR QUASI-PSEUDO-MONOTONE TYPE III OPERATORS ON COMPACT SETS

  • Mohammad S. R. Chowdhury;Liliana Guran
    • Nonlinear Functional Analysis and Applications
    • /
    • v.29 no.3
    • /
    • pp.825-839
    • /
    • 2024
  • A new type of more general form of variational inequalities for quasi-pseudo-monotone type III and strong quasi-pseudo-monotone type III operators has been obtained on compact domains in locally convex Hausdorff topological vector spaces. These more general forms of variational inequalities for the above types of operators used the more general form of minimax inequality by Chowdhury and Tan in [3] as the main tool to derive them. Our new results established in this paper should have potential applications in nonlinear analysis and related applications, e.g., see Aubin [1], Yuan [11] and references wherein.

ERROR ANALYSIS OF THE hp-VERSION UNDER NUMERICAL INTEGRATIONS FOR NON-CONSTANT COEFFICIENTS

  • KIM, IK-SUNG
    • Honam Mathematical Journal
    • /
    • v.27 no.2
    • /
    • pp.317-332
    • /
    • 2005
  • In this paper we consider the hp-version to solve non-constant coefficients elliptic equations on a bounded, convex polygonal domain ${\Omega}$ in $R^2$. A family $G_p=\{I_m\}$ of numerical quadrature rules satisfying certain properties can be used for calculating the integrals. When the numerical quadrature rules $I_m{\in}G_p$ are used for computing the integrals in the stiffness matrix of the variational form we will give its variational form and derive an error estimate of ${\parallel}u-{\widetilde{u}}^h_p{\parallel}_{1,{\Omega}$.

  • PDF

Variational nodal methods for neutron transport: 40 years in review

  • Zhang, Tengfei;Li, Zhipeng
    • Nuclear Engineering and Technology
    • /
    • v.54 no.9
    • /
    • pp.3181-3204
    • /
    • 2022
  • The variational nodal method for solving the neutron transport equation has evolved over 40 years. Based on a functional form of the Boltzmann neutron transport equation, the method now comprises a complete set of variants that can be employed for different problems. This paper presents an extensive review of the development of the variational nodal method. The emphasis is on summarizing the whole theoretical system rather than validating the methodologies. The paper covers the variational nodal formulation of the Boltzmann neutron transport equation, the Ritz procedure for various application purposes, the derivation of boundary conditions, the extension for adjoint and perturbation calculations, and treatments for anisotropic scattering sources. Acceleration approaches for constructing response matrices and solving the resulting system of algebraic equations are also presented.

THE USE OF ITERATIVE METHODS FOR SOLVING NAVEIR-STOKES EQUATION

  • Behzadi, Shadan Sadigh;Fariborzi Araghi, Mohammad Ali
    • Journal of applied mathematics & informatics
    • /
    • v.29 no.1_2
    • /
    • pp.381-394
    • /
    • 2011
  • In this paper, a Naveir-Stokes equation is solved by using the Adomian's decomposition method (ADM), modified Adomian's decomposition method (MADM), variational iteration method (VIM), modified variational iteration method (MVIM), modified homotopy perturbation method (MHPM) and homotopy analysis method (HAM). The approximate solution of this equation is calculated in the form of series which its components are computed by applying a recursive relation. The existence and uniqueness of the solution and the convergence of the proposed methods are proved. A numerical example is studied to demonstrate the accuracy of the presented methods.

HEVA: Cooperative Localization using a Combined Non-Parametric Belief Propagation and Variational Message Passing Approach

  • Oikonomou-Filandras, Panagiotis-Agis;Wong, Kai-Kit
    • Journal of Communications and Networks
    • /
    • v.18 no.3
    • /
    • pp.397-410
    • /
    • 2016
  • This paper proposes a novel cooperative localization method for distributed wireless networks in 3-dimensional (3D) global positioning system (GPS) denied environments. The proposed method, which is referred to as hybrid ellipsoidal variational algorithm (HEVA), combines the use of non-parametric belief propagation (NBP) and variational Bayes (VB) to benefit from both the use of the rich information in NBP and compact communication size of a parametric form. InHEVA, two novel filters are also employed. The first one mitigates non-line-of-sight (NLoS) time-of-arrival (ToA) messages, permitting it to work well in high noise environments with NLoS bias while the second one decreases the number of calculations. Simulation results illustrate that HEVA significantly outperforms traditional NBP methods in localization while requires only 50% of their complexity. The superiority of VB over other clustering techniques is also shown.

A Note on the Hull Form Variational Methods (선형변환 방법에 대한 소고)

  • 이춘주;윤현세;유재문
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.40 no.1
    • /
    • pp.63-68
    • /
    • 2003
  • Systematic geometrical variation method of hull forms, such as "1 -Cp", "Swinging" and "Lackenby" are widely used in the early stage of a new design from those of a similar parent ship, which shows a better performance through the model test and/or sea trials. This method is simple and easy to modify original hull forms without changing the main characteristics. The shape of the prismatic curie can be easily varied by these methods, however, the frame line shape in the body plan can′t be generated easily, when the section shapes are complicated or have discontinuities or the mismatch of the body plan and the stem and stern profiles. To overcome this drawback of the hull form variations, a simple and useful method has been proposed in the present study.

An incremental convex programming model of the elastic frictional contact problems

  • Mohamed, S.A.;Helal, M.M.;Mahmoud, F.F.
    • Structural Engineering and Mechanics
    • /
    • v.23 no.4
    • /
    • pp.431-447
    • /
    • 2006
  • A new incremental finite element model is developed to simulate the frictional contact of elastic bodies. The incremental convex programming method is exploited, in the framework of finite element approach, to recast the variational inequality principle of contact problem in a discretized form. The non-classical friction model of Oden and Pires is adopted, however, the friction effect is represented by an equivalent non-linear stiffness rather than additional constraints. Different parametric studies are worked out to address the versatility of the proposed model.

TWO JUMPING NONLINEAR TERMS AND A NONLINEAR WAVE EQUATION

  • Jung, Tacksun;Choi, Q-Heung
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.22 no.4
    • /
    • pp.675-687
    • /
    • 2009
  • We find the multiple nontrivial solutions of the equation of the form $u_{tt}-u_{xx}=b_1[(u+1)^{+}-1]+b_2[(u+2)^{+}-2]$ with Dirichlet boundary condition. Here we reduce this problem into a two-dimensional problem by using variational reduction method and apply the Mountain Pass theorem to find the nontrivial solutions.

  • PDF

A Mixed Variational Principle of Fully Anisotropic Linear Elasticity (이방성탄성문제의 혼합형변분원리)

  • 홍순조
    • Computational Structural Engineering
    • /
    • v.4 no.2
    • /
    • pp.87-94
    • /
    • 1991
  • In this paper, a mixed variational principle applicable to the linear elasticity of inhomogeneous anisotropic materials is presented. For derivation of the general variational principle, a systematic procedure for the variational formulation of linear coupled boundary value problems developed by Sandhu et al. is employed. Consistency condition of the field operators with the boundary operators results in explicit inclusion of boundary conditions in the governing functional. Extensions of admissible state function spaces and specialization to a certain relation in the general governing functional lead to the desired mixed variational principle. In the physical sense, the present variational principle is analogous to the Reissner's recent formulation obtained by applying Lagrange multiplier technique followed by partial Legendre transform to the classical minimum potential energy principle. However, the present one is more advantageous for the application to the general anisotropic materials since Reissner's principle contains an implicit function which is not easily converted to an explicit form.

  • PDF