ERROR ANALYSIS OF THE hp-VERSION UNDER NUMERICAL INTEGRATIONS FOR NON-CONSTANT COEFFICIENTS

  • KIM, IK-SUNG (Department of Applied Mathematics Korea Maritime University)
  • Received : 2005.05.03
  • Published : 2005.06.25

Abstract

In this paper we consider the hp-version to solve non-constant coefficients elliptic equations on a bounded, convex polygonal domain ${\Omega}$ in $R^2$. A family $G_p=\{I_m\}$ of numerical quadrature rules satisfying certain properties can be used for calculating the integrals. When the numerical quadrature rules $I_m{\in}G_p$ are used for computing the integrals in the stiffness matrix of the variational form we will give its variational form and derive an error estimate of ${\parallel}u-{\widetilde{u}}^h_p{\parallel}_{1,{\Omega}$.

Keywords

References

  1. Sobolev spaces Adams, R.A.
  2. Numer. Math. v.37 Error estimates for the combined h and p version of the finite element method Babuska, I.;Dorr, M.R.
  3. Performance of the h-p version of the finite element method with various elements, Technical Note BN-1128 Babuska, I.;Elman, H.C.
  4. The p and h-p versions of the finite element method, Technical Note BN-1101 Babuska, I.;Suri, M.
  5. SIAM J. Numer. Anal. v.24 The optimal convergence rate of the p-version of the finite element method Babuska, I.;Suri, M.
  6. RAIRO Math. Mod. and Num. Anal. v.21 The hp-version of the finite element method with quasiuniform meshes Babuska, I.;Suri, M.
  7. Interpolation spaces. An introduction Bergh, J.;Lofstrom, J.
  8. J. Appl. Numer. Math. v.6 Approximation results for spectral methods with domain decomposition Bernardi, C.;Maday, Y.
  9. Math. of comput. v.38 Approximation Results for orthogonal polynomials in sobolev spaces Canuto, C.;Quarteroni, A.
  10. The finite element method for elliptic problems Ciarlet, P.G.
  11. Math. Mod. and Numer. Anal. v.24 The p-version of the finite element method for elliptic equations of order 21 Suri, M.