• Title/Summary/Keyword: Variable Engine Speed Control

Search Result 57, Processing Time 0.024 seconds

Effect of Control Method and Plunger Profile of Variable Valve on Flow Control of a Liquid Rocket Engine (액체로켓엔진의 유량조절에 가변밸브의 조절기법과 플런저 형상이 미치는 영향)

  • Lee, Joong-Youp;Huh, Hwan-Il
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.15 no.5
    • /
    • pp.35-47
    • /
    • 2011
  • Dynamic characteristics of a flow control valve, which plays an important role in thrust and O/F control of liquid rocket engines, have been analyzed by the AMESim simulator modeling. The speed control method was proposed for the control of the flow valve equipped with a BLDC motor. The experimental results demonstrated the feasibility of systematical application as well as the performance of the speed control method. Moreover, the speed control method for BLDC motor is much simpler than the P control method in complex flow systems. With the speed control method, the control flow characteristics were evaluated according to plunger shapes. Consequently, same plunger shape proved to be more efficient in the mixture ratio control operated by two flow valves. It was also shown that the appropriate modification of plunger shapes could reduce the mixture ratio perturbation by 0.5%.

A Study on the Design of Electromagnetic Valve Actuator for VVT Engine

  • Park, Seung-hun;Kim, Dojoong;Byungohk Rhee;Jaisuk Yoo;Lee, Jonghwa
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.3
    • /
    • pp.357-369
    • /
    • 2003
  • Electromagnetic valve (EMV) actuation system is a new technology for improving fuel efficiency and at the same time reducing omissions in internal combustion engines. It can provide more flexibility in valve event control compared with conventional variable valve actuation devices. The electromagnetic valve actuator must be designed by taking the operating conditions and engine geometry limits of the internal combustion engine into account. To help develop a simple design method, this paper presents a procedure for determine the basic design parameters and dimensions of the actuator from the relations of the valve dynamics, electromagnetic circuit and thermal loading condition based on the lumped method. To verify the accuracy of the lumped method analysis, experimental study is also carried out on a prototype actuator. It is found that there is a relatively good agreement between the experimental data and the results of the proposed design procedure. Through the whole speed range, the actuator maintains proper performances in valve timing and event control.

A Study on the Cycle Analyzing and Intake Valve Control by the Miller Method with a High Expansion into Low-Speed Diesel Engine (저속 디젤기관에서 고팽창의 밀러방식에 의한 사이클 해석 및 흡기밸브제어에 대한 연구)

  • Jag, Tae-Ik
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.8
    • /
    • pp.1100-1106
    • /
    • 2009
  • Recently, there are quite a lot of attention is drown on the researches related to of Miller method applied high expansion cycle. For this study, high expansion cycles are formed and analyzed with the base view point of thermodynamics, and the features of each factors are also investigated. As a result of analysis, the expansion-compression ratio is expected with a decrease of effective compression ratio as intake valve closing time retarded, however, the decrease of mean effective pressure and its output is accompanied with the counterflow of intake air. Accordingly, as the consequence of such failure, it is expected that an alternative is needed for the realization of high expansion cycles, and the improvement over thermal efficiency. To materialize such cycle, the control system to delay the closing time of intake valve was designed and VVT, the 3 S/B low speed diesel engine, is applied to evaluate the efficiency. The result of the trial shows that there was no significant errors.

Design Study of a Simulation Duct for Gas Turbine Engine Operations (가스터빈엔진을 모의하기 위한 시뮬레이션덕트 설계 연구)

  • Im, Ju Hyun;Kim, Sun Je;Kim, Myung Ho;Kim, You Il;Kim, Yeong Ryeon
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.23 no.1
    • /
    • pp.124-131
    • /
    • 2019
  • A design study of gas turbine engine simulation duct was conducted to investigate the operating characteristics and control gain tunning of the Altitude Engine Test Facility(AETF). The simulation duct design involved testing variable spike nozzle and ISO standard choking nozzle to verify the measurements such as mass flow rate and thrust. The simulation duct air flow area was designed to satisfy Ma 0.4 at the aerodynamic interface plane(AIP) at engine design condition. The test conditions for verifying the AETF controls and measurement devices were deduced from 1D analysis and CFD calculation results. The spike-cone driving part was designed to withstand the applied aero-load, and satisfy the axial traversing speed of 10 mm/s at whole operation envelops.

Simulation and control of rotary snow plow

  • Kubota, Yuzuzu;Yamasita, Mitsuhisa;Hiromitsu-Hikita;Watabe, Tomoji
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1988.10b
    • /
    • pp.869-874
    • /
    • 1988
  • The operational control of the rotary snowplow is considered to improve its working efficiency. The speed of the rotary snowplow is controlled, so that the load to the rotary snowplow is kept constant. As the load can not directly be detected, some items considered for the controlled variable are, for example, the engine revolution, the load pressure and etc. In order to examine these, the working simulation of the rotary snowplow was considered by introducing the experimental equation of the load. The control methods were examined by means of the simple digital control using the personal computer. These control methods were compared with simulations and experiments. Consequently, the working efficiency is improved about 20% than the manual operation.

  • PDF

Direct Power Control of PMa-SynRG with Back-to-back PWM Voltage-fed Drive

  • Baek, Jeihoon;Kwak, Sangshin
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.761-768
    • /
    • 2018
  • In this paper, the performance analysis of a control topology based on the direct output power control (DPC) for robust and inexpensive permanent magnet-assisted synchronous reluctance generator (PMa-SynRG) system is presented. The PMa-SynRG might be coupled to an internal combustion engine running at variable speed. A three-phase PWM rectifier rectifies the generator output and supplies the dc link. A single-phase PWM inverter supplies constant ac voltage at constant frequency to the grid. The overall control algorithm is implemented on a TMS320F2812 digital signal processor board. Simulations results and experimental results verify the operation of the proposed system.

Analysis of Emissions of Agricultural Tractor according to Engine Load Factor during Tillage Operation (엔진 부하율에 따른 트랙터 경운 작업 시 배기가스 분석)

  • Lee, Jun Ho;Jeon, Hyeon Ho;Baek, Seung Yun;Baek, Seung Min;Kim, Wan Soo;Siddique, Md. Abu Ayub;Kim, Yong Joo
    • Journal of Drive and Control
    • /
    • v.19 no.4
    • /
    • pp.54-61
    • /
    • 2022
  • This is a basic study analyzing emissions of an agricultural tractor during tillage operations. In this study, CO, THC, NOx, and PM considered as emission factor were analyzed during plow and rotary tillage operation by the tractor. Engine torque and rotational speed were measured through ECU. Engine power was calculated using engine torque and rotational speed. The emissions was calculated based on the number of units, rated power, load factor, and operating time. Results showed that the load factor was calculated almost twice, which was higher than 0.48. It was also observed that the emission of the tractor was variable for different agricultural operations because tractor loads were different based on operations. There was a difference in emissions due to differences in plow and rotary working hours. To estimate the emission of agricultural tractor based field operations in detail, it is necessary to consider TAF (Transient Adjustment Factor) and DFA (Deterioration factor). In the future, TAF and DFA will be considered to estimate emissions of the agricultural tractor. Finally, results of this study can contribute to the literature to estimate tractor emissions accurately.

Countermeasures to the Introduction of Low Caloric Gas Fuel for Natural Gas Engine (저열량 가스 적용에 따른 천연가스엔진의 대응 방안 연구)

  • Park, Cheol-Woong;Kim, Chang-gi;Oh, Se-Chul;Lee, Jang-Hee
    • Journal of the Korean Institute of Gas
    • /
    • v.25 no.2
    • /
    • pp.34-41
    • /
    • 2021
  • In order to cope with the problems that may occur when the natural gas used in Korea becomes low in calories, the problems that may have to the domestic industrial gas equipment must be identified in advance, and based on this, countermeasures for efficient use of energy must be preceded. In this study, in order to solve the problem of deterioration of engine output performance and efficiency due to the introduction of low calorific gas when using a lean-burning natural gas engine that complies with the EURO-6 regulation, specific control plans and results based on the experiment are intended to be presented. In order to identify the improvement effect by the control variable represented by the ignition timing under the full load condition at the engine speed of 1,400 rpm and 550 Nm, 2,100 rpm, which is the engine speed at the rated operation condition, the thermal efficiency and exhaust gas characteristics were identified and optimized by changing the ignition timing for each gas fuel. In the case of pure methane, which shows the lowest value based on the torque under the full load condition, if the ignition timing is advanced by about 2 CAD from the reference ignition timing, the torque can be compensated without a large increase in NOx emission.

A Control of CVT Hydraulic System using Embedded System (임베디드 시스템을 이용한 CVT 유압시스템 제어)

  • Han, K.W.;Ryu, W.S.;Jang, I.G.;Jean, J.W.;Kim, H.S.;Hwang, S.H.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.4 no.1
    • /
    • pp.18-24
    • /
    • 2007
  • The continuously variable transmission (CVT) of which speed ratio can change continuously in a fixed range has the benefits of low fuel consumption and exhaust gas because it enables the engine of a vehicle to operate in a high efficiency range regardless of vehicle speed. The speed ratio of belt type CVT is controlled by adjusting line pressure. The one of the line pressure control methods, mechanical-hydraulic control is usually adopting VDT's control method, in which the secondary solenoid valve has two functions both a regulator and a line pressure controller. However, this control method could not show the high performance of CVT with optimal driving capability because of the limitation of simple control algorithm, and it could not gain market share sufficiently in spite of the advantage of CVT with low fuel consumption. On the other hand, the electro-hydraulic control method gives the enhancement of power performance and low fuel consumption by implementing various driving mode using the proportional control or PWM control. The key of CVT technique is to develop a control algorithm of the electro-hydraulic solenoid valve in order to implement the speed ratio efficiently. In this paper, the line pressure control algorithm is proposed and the hydraulic system is controlled using metal belt type CVT test rig and the embedded ECU platform.

  • PDF

Accelerating Ability Optimization for Dual Mode Hybrid Vehicle Using Complex Planetary Gears (복합 유성기어를 이용한 듀얼모드 하이브리드 자동차의 가속성능 최적화)

  • Yang, Si-U;Kim, Nam-Wook;Yang, Ho-Rim;Park, Yoeng-Il;Cha, Suk-Won
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.11a
    • /
    • pp.97-100
    • /
    • 2006
  • Accelerating ability is one of the most important performance of the vehicle. Unlike conventional internal combustion vehicles and power-assist hybrid vehicles, the maximized acceleration of dual mode hybrid vehicles is not simply. achieved by maximizing engine or motor torque Because of the dynamic stability of planetary gear, speeds and torques control of engine, motor 1 and motor 2 is essential and according to control value, acceleration performance is changed There are two control values which are velocity and torque for each component totalling six. These six values can be variables for an objective function. However, because three velocity variables can be regarded as only one variable speed ratio and the remaining three torque variables can be solved analytically, without complicated numerical algorithm the solution for the objective function can be obtained. This optimized solution shows the best performance possible to the specified dual mode system.

  • PDF