• 제목/요약/키워드: Variable Damping

검색결과 182건 처리시간 0.029초

Nonlinear, seismic response spectra of smart sliding isolated structures with independently variable MR dampers and variable stiffness SAIVS system

  • Nagarajaiah, Satish;Mao, Yuqing;Saharabudhe, Sanjay
    • Structural Engineering and Mechanics
    • /
    • 제24권3호
    • /
    • pp.375-393
    • /
    • 2006
  • Under high velocity, pulse type near source earthquakes semi-active control systems are very effective in reducing seismic response base isolated structures. Semi-active control systems can be classified as: 1) independently variable stiffness, 2) independently variable damping, and 3) combined variable stiffness and damping systems. Several researchers have studied the effectiveness of independently varying damping systems for seismic response reduction of base isolated structures. In this study effectiveness of a combined system consisting of a semi-active independently variable stiffness (SAIVS) device and a magnetorheological (MR) damper in reducing seismic response of base isolated structures is analytically investigated. The SAIVS device can vary the stiffness, and hence the period, of the isolation system; whereas, the MR damper enhances the energy dissipation characteristics of the isolation system. Two separate control algorithms, i.e., a nonlinear tangential stiffness moving average control algorithm for smooth switching of the SAIVS device and a Lyapunov based control algorithm for damping variation of MR damper, are developed. Single and multi degree of freedom systems consisting of sliding base isolation system and both the SAIVS device and MR damper are considered. Results are presented in the form of nonlinear response spectra, and effectiveness of combined variable stiffness and variable damping system in reducing seismic response of sliding base isolated structures is evaluated. It is shown that the combined variable stiffness and variable damping system leads to significant response reduction over cases with variable stiffness or variable damping systems acting independently, over a broad period range.

Sloped rolling-type bearings designed with linearly variable damping force

  • Wang, Shiang-Jung;Sung, Yi-Lin;Hong, Jia-Xiang
    • Earthquakes and Structures
    • /
    • 제19권2호
    • /
    • pp.129-144
    • /
    • 2020
  • In this study, the idea of damping force linearly proportional to horizontal isolation displacement is implemented into sloped rolling-type bearings in order to meet different seismic performance goals. In addition to experimentally demonstrating its practical feasibility, the previously developed analytical model is further modified to be capable of accurately predicting its hysteretic behavior. The numerical predictions by using the modified analytical model present a good match of the shaking table test results. Afterward, several sloped rolling-type bearings designed with linearly variable damping force are numerically compared with a bearing designed with conventional constant damping force. The initial friction damping force adopted in the former is designed to be smaller than the constant one adopted in the latter. The numerical comparison results indicate that when the horizontal isolation displacement does not exceed the designed turning point (or practically when subjected to minor or frequent earthquakes that seldom have a great displacement demand for seismic isolation), the linearly variable damping force design can exhibit a better acceleration control performance than the constant damping force design. In addition, the former, in general, advantages the re-centering performance over the latter. However, the maximum horizontal displacement response of the linearly variable damping force design, in general, is larger than that of the constant damping force design. It is particularly true when undergoing a horizontal isolation displacement response smaller than the designed turning point and designing a smaller value of initial friction damping force.

반능동형 충격흡수기의 연속가변 감쇠특성에 대한 CFD 해석 (CFD Analysis on the Continuous and Variable Damping Characteristics of a Semi-Active Shock Absorber)

  • 윤준원
    • 한국자동차공학회논문집
    • /
    • 제12권2호
    • /
    • pp.101-108
    • /
    • 2004
  • Recently, a semi-active shock absorber has been taking interest because of its low cost and simple structure than the active one. CFD analysis has been conducted to investigate the continuous and variable damping characteristics of the semi-active shock absorber. Also, the flow resistance characteristics of a spool valve has been examined to identify individual parameters(namely, exponent and discharge coefficient) of pressure-flow rate relation needed for the accurate valve modeling. The flow field in the damping valve was simulated using the commercial code, CFX-5.3. The numerical results showed reasonable agreement with the experimental outputs. The pressure distribution with the variation of spool opening length and volume flow rate were discussed in detail. And the continuous and variable damping performance was found clearly. The individual parameters of spool valve were obtained as a function of orifice area. The exponent and discharge coefficient were fitted in with the first and the third polynomial respectively.

가변강성 및 가변감쇠 조절장치를 이용한 구조물의 지진응답제어 (Seismic Response Control of Structures Using Variable Stiffness and Variable Damping Devices)

  • 고현무;옥승용;우지영;박관순
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2003년도 춘계 학술발표회논문집
    • /
    • pp.449-456
    • /
    • 2003
  • Hybrid semi-active control system is applied to improve the seismic peformance of the building structure against earthquake excitation and the LQR-based semi-active control algorithm is developed to tune the integrated stiffness/damping characteristics of the hybrid system complementarily. Numerical simulation for a 8-story shear building has been carried out to verify the applicability and effectiveness of the proposed method. Analysis results showed that the hybrid system can be a compromising solution to the seismic response control problem, compared with conventional variable stiffness or variable damping systems. Comparison results proved that the proposed algorithm can perform refined tuning of the stiffness and damping coefficients of the hybrid semi-active control system better than sliding mode control algorithm.

  • PDF

MR유체를 이용한 스퀴즈모드형 마운트의 동특성 (Dynamic Properties of Squeeze Type Mount Using MR Fluid)

  • 하종용;안영공;양보석;정석권;김동조
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 춘계학술대회논문집
    • /
    • pp.374-378
    • /
    • 2003
  • This paper presents investigation of damping characteristics of squeeze mode type MR (Magneto-Rheological) mount experimentally. Since damping property of the MR fluid is changed by variation of the applied magnetic field strength, squeeze mode type MR mount proposed in the study has variable damping characteristics according to the applied magnetic field s strength. In the present work, the performance of the mount was experimentally investigated according to the magnetic field strength and exciting frequencies. The experimental results present that the MR mount can effectively reduce the vibration in a wide range of frequency by controlling the applied electromagnetic filed strength. Viscous damping and stiffness coefficients of the MR mount tend to be changed according to the variation of the applied currents in this study and MR effect is reduced by increasing exciting frequency.

  • PDF

MR 유체를 이용한 스퀴즈모드형 마운트의 동특성 (Dynamic Properties of Squeeze Type Mount Using MR Fluid)

  • 안영공
    • 한국소음진동공학회논문집
    • /
    • 제13권6호
    • /
    • pp.490-495
    • /
    • 2003
  • This paper presents investigation of damping characteristics of squeeze mode type MR (magneto-rheological) mount experimentally. Since damping property of the MR fluid is changed by variation of the applied magnetic field strength, squeeze mode type MR mount proposed in the study has variable damping characteristics according to the applied magnetic field strength. In the present work, the performance of the mount was experimentally Investigated according to the magnetic field strength and exciting frequencies. The experimental results present that the MR mount can effectively reduce the vibration in a wide range of frequency by controlling the applied electromagnetic field strength. Viscous damping and stiffness coefficients of the MR mount tend to be changed according to the variation of the applied currents in this study and MR effect is reduced by increasing exciting frequency.

DEVELOPMENT OF A REVERSE CONTINUOUS VARIABLE DAMPER FOR SEMI-ACTIVE SUSPENSION

  • Yoon, Young-Hwan;Choi, Myung-Jin;Kim, Kyung-Hoon
    • International Journal of Automotive Technology
    • /
    • 제3권1호
    • /
    • pp.27-32
    • /
    • 2002
  • Semi-active suspension systems are greatly expected to be in the mainstream of future controlled suspensions fur passenger cars. In this study, a continuous variable damper for a passenger car suspension is developed. It is controlled actively and exhibits high performance with light weight, low cost, and low energy consumption. To get fast response of the damper, reverse damping mechanism is adapted, and to get small pressure change rate after blow-off, a pilot controlled proportional valve is designed and analyzed. The reverse continuous variable damper is designed as a HS-SH damper which offers good body control with reduced transferred input force from tire, compared with any other type of suspension system. The damper structure is designed, so that rebound and compression damping force can be tuned independently, of which variable valve is placed externally. The rate of pressure change with respect to the flow rate after blow-offbecomes smooth when the fixed orifice size increases. Damping forces are measured with the change of the solenoid current at the different piston velocities to confirm the maximum hysteresis of 20N, linearity, and variance of damping farce. The damping farce variance is wide and continuous, and is controlled by the spoof opening, of which scheme is usually adapted in proportional valves. The reverse continuous variable damper developed in this study is expected to be utilized in the semi-active suspension systems in passenger cars after its performance and simplicity of the design is confirmed through real car test.

능동적 점성감쇠를 이용한 차량용 동적 흡진기의 모델링과 제어에 관한 연구 (A Study about Modeling and Control of Dynamic Absorber for Vehicle by Using Active Viscous Damping)

  • 김대원;배준영
    • 소음진동
    • /
    • 제9권1호
    • /
    • pp.121-130
    • /
    • 1999
  • Generally, A Dynamic Absorber by using Active viscous Damping is highlighted for effective suspension system, such as improved ride comfort and handling in the market. Lately, this system based on the Sky-Hook damper theory is introduced by the name of "Active Dynamic Absorber" to us. This system has an excellent performance in contrast to Passive. Adaptive Dynamic Absorber, besides having low cost components of system, low energy consumption. light weight of system. In this viewpoint. most of car-maker will adopt this system in the near future. For this reason, we developed Dynamic Absorber by using Active viscous Damping which is equipped with continuously variable Dynamic Absorber and Control logic consisting Filter and Estimator. control apparatus of Dynamic Absorber operated by 16-bit microprocessor of high performance. variable device of viscous Damping. G-sensor so on. In this paper. several important points of development procedure for realizing this system will be described with results in which is obtained from experiment by simulation and Full car test in Proving ground. respectively.pectively.

  • PDF

가변 감쇠 파라미터를 이용한 Levenberg-Marquardt 알고리즘의 학습 속도 향상 (Accelerating Levenberg-Marquardt Algorithm using Variable Damping Parameter)

  • 곽영태
    • 한국컴퓨터정보학회논문지
    • /
    • 제15권4호
    • /
    • pp.57-63
    • /
    • 2010
  • Levenberg-Marquardt 알고리즘에서 감쇠 파라미터는 오류역전파 학습과 Gauss-Newton 학습의 스위치 역할을 하며 학습 속도에 영향을 준다. 이런 감쇠 파라미터를 고정시키는 것은 오차 함수의 진동을 유발하고 학습 속도를 감소시킨다. 따라서 본 논문은 오차 함수의 변화 과정을 참조하여 감쇠 파라미터를 가변적으로 적용하는 방법을 제안한다. 제안된 방법은 오차의 변화량이 크면 감쇠 파라미터를 크게, 오차의 변화량이 작으면 감쇠 파라미터를 작게 조정한다. 이것은 모멘텀과 유사한 역할을 하여 학습 속도를 향상시킨다. 제안된 방법의 검증을 위한 실험으로는 iris 분류 문제와 wine 분류 문제를 사용하였다. 제안된 방법은 iris 분류 문제에서는 67% 학습에서, wine 분류 문제에서는 78% 학습에서 학습 속도가 향상되었으며 기존 방법과 비교하여 오차의 진동도 적은 것을 확인할 수 있었다.

BLOW-UP OF SOLUTIONS FOR WAVE EQUATIONS WITH STRONG DAMPING AND VARIABLE-EXPONENT NONLINEARITY

  • Park, Sun-Hye
    • 대한수학회지
    • /
    • 제58권3호
    • /
    • pp.633-642
    • /
    • 2021
  • In this paper we consider the following strongly damped wave equation with variable-exponent nonlinearity utt(x, t) - ∆u(x, t) - ∆ut(x, t) = |u(x, t)|p(x)-2u(x, t), where the exponent p(·) of nonlinearity is a given measurable function. We establish finite time blow-up results for the solutions with non-positive initial energy and for certain solutions with positive initial energy. We extend the previous results for strongly damped wave equations with constant exponent nonlinearity to the equations with variable-exponent nonlinearity.