• Title/Summary/Keyword: Vacuum Assisted Resin Transfer Molding, VARTM

Search Result 29, Processing Time 0.019 seconds

A Study on the Measurement System Design for the Resin Flow and Curing in the Vacuum Assisted Resin Transfer Molding(VARTM) Process Using the Long Period Fiber Bragg Grating (삽입된 장주기 광섬유 격자를 이용한 VARTM 공정에서의 수지이동 및 변형 과정 예측 시스템 설계에 관한 연구)

  • Yoon, Young-Ki;Chung, Seung-Hwan;Lee, Woo-Il;Lee, Byoung-Ho;Byun, Joon-Hyung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.5
    • /
    • pp.489-494
    • /
    • 2004
  • Long Period Gratings (LPG) is currently receiving considerable attention because of their consistent measuring results fur pressure, temperature, strain and flow. LPG is easier to prepare and has a high sensitivity compared with Fiber Bragg Gratings (FBG). In addition, this kind of optical fiber sensors could be used for implementations in various structures. In this paper, LPG was used to monitor in situ the resin flow and the curing process in VARTM (Vacuum Assisted Resin Transfer. Molding). In order to demonstrate the effectiveness of the method, FBG is inserted into the glass mat to monitor the resin flow using optical spectrum analyzer (OSA). The curing reactions in VARTM are also observed using the same method. From the results, the attenuation wavelength shift and the loss change of attenuation band can be obtained from the status of the RTM (Resin Transfer Molding) sample owing to the internal variations of the .effective index, temperature, and pressure. It is shown that the proposed LPG is more effective in monitoring the curing reaction than FBG.

Experimental Study of the Microvoids formation and Transport in the Vacuum Assisted Resin Transfer Molding Process (Vacuum Assisted Resin Transfer Molding 공정에서의 Microvoids 형성과 이동에 관한 연구)

  • Se Won Eun;Woo Il Lee
    • Composites Research
    • /
    • v.16 no.6
    • /
    • pp.10-15
    • /
    • 2003
  • In RTM process, the content of microvoids can be critical due to the fact that the presence of microvoids degrades mechanical properties on the fabricated composite parts. The present paper proposes an experimental method of observation in void formation and transport. VARTM processes are performed under observation with a digital video camera and then the microvoid formation in the flow front and transport are videotaped and observed both in channels and tows. The obtained data are used in the mathematical model in order to determine the model constants. Experimental results and expected results from the mathematical model show a good agreement with each other.

Investigation on Mechanical Properties of Natural-Fiber Composite Manufactured using VARTM Method (VARTM 공법으로 제작된 자연섬유 복합재료의 기계적 특성 분석)

  • Park, Hyunbum
    • Journal of Aerospace System Engineering
    • /
    • v.10 no.3
    • /
    • pp.59-62
    • /
    • 2016
  • In this study, an investigation was performed on the mechanical properties of the natural-fiber-composite structure. The specimen was manufactured using the Vacuum Assisted Resin Transfer Molding (VARTM) method. The flax-fiber materials were adopted for the natural fiber composite, and vinyl-ester resin was also adopted. After a manufactured specimen was obtained, a mechanical test was carried out. The mechanical properties of the experiment results were compared with those of the natural-composite data cited from a number of other references.

Properties of Composites Reinforced with Fiberglass to Wood and Particleboard Using VARTM (Vacuum Assisted Resin Transfer Molding) Fabrication Process (VARTM (Vacuum Assisted Resin Transfer Molding) 방법에 의해 목재 및 파티클보드를 유리섬유로 보강한 복합소재의 성질)

  • Cha, Jae Kyung;Lee, Sung Woo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.35 no.3
    • /
    • pp.29-35
    • /
    • 2007
  • This research investigates the composites reinforced with fiberglass to wood and commercial particleboard using VARTM process to enhance the mechanical properties. Specimens were prepared from lumbers from thinning crop-trees and commercial particleboard. Matched specimen were reinforced on both sides with one layer of unidirectional fiberglass roving. Fiberglass reinforcement to wood and particleboard using VARTM process improved mechanical properties.

Mechanical and thermal properties of MWCNT-reinforced epoxy nanocomposites by vacuum assisted resin transfer molding

  • Lee, Si-Eun;Cho, Seho;Lee, Young-Seak
    • Carbon letters
    • /
    • v.15 no.1
    • /
    • pp.32-37
    • /
    • 2014
  • Multi-walled carbon nanotube (MWCNT)/epoxy composites are prepared by a vacuum assisted resin transfer molding (VARTM) method. The mechanical properties, fracture surface morphologies, and thermal stabilities of these nanocomposites are evaluated for epoxy resins with various amounts of MWCNTs. Composites consisting of different amounts of MWCNTs displayed an increase of the work of adhesion between the MWCNTs and the matrix, which improved both the tensile and impact strengths of the composites. The tensile and impact strengths of the MWCNT/epoxy composite improved by 59 and 562% with 0.3 phr of MWCNTs, respectively, compared to the epoxy composite without MWCNTs. Thermal stability of the 0.3 phr MWCNT/epoxy composite increased compared to other epoxy composites with MWCNTs. The enhancement of the mechanical and thermal properties of the MWCNT/epoxy nanocomposites is attributed to improved dispersibility and strong interfacial interaction between the MWCNTs and the epoxy in the composites prepared by VARTM.

Processing - Interlaminar Shear Strength Relationship of Carbon Fiber Composites Reinforced with Carbon Nanotubes (탄소나노튜브로 보강된 탄소섬유복합재의 제조공정과 층간전단강도)

  • Kim, Han-Sang
    • Composites Research
    • /
    • v.24 no.5
    • /
    • pp.34-38
    • /
    • 2011
  • Carbon nanotubes (CNTs) have been widely investigated as reinforcements of CNT/polymer nanocomposites to enhance mechanical and electrical properties of polymer matrices since their discovery in the early 90's. Furthermore, the number of studies about incorporating CNTs into carbon fiber reinforced plastics (CFRP) to reinforce their polymer matrices is increasing recently. In this study, single-walled carbon nanotubes (SWNT) were dispersed in epoxy with 0.2 wt.% and 0.5 wt.%. Then, the SWNT/epoxy mixtures were processed to carbon fiber composites by a vacuum assisted resin transfer molding (VARTM) and a wet lay up method. The processed composite samples were tested for the interlaminar shear strength (ILSS). The relationship between the interlaminar shear strengths and processing, and the reinforcement mechanism of carbon nanotubes were investigated. CNT/epoxy nanocomposite specimens showed the increased tensile properties. However, the ILSS of carbon fiber composites was not enhanced by reinforcing the matrix with CNTs because of processing issues caused by increased viscosity of the matrix due to addition of CNTs particularly for a VARTM method.

Bond Strength of Carbon Fiber Sheet on Concrete Substrate Processed by Vacuum Assisted Resin Transfer Molding

  • Uddin, N.;Shohel, M.;Vaidya, U.K.;Serrano-Perez, J.C.
    • Advanced Composite Materials
    • /
    • v.17 no.3
    • /
    • pp.277-299
    • /
    • 2008
  • High quality and expedient processing repair methods are necessary to enhance the service life of bridge structures. Deterioration of concrete can occur as a result of structural cracks, corrosion of reinforcement, and freeze.thaw cycles. Cost effective methods with potential for field implementation are necessary to address the issue of the vulnerability of bridge structures and how to repair them. Most infrastructure related applications of fiber-reinforced plastics (FRPs) use traditional hand lay-up technology. The hand lay-up is tedious, labor-intensive and relies upon personnel skill level. An alternative to traditional hand lay-up of FRP for infrastructure applications is Vacuum Assisted Resin Transfer Molding (VARTM). VARTM uses single sided molding technology to infuse resin over fabrics wrapping large structures, such as bridge girders and columns. There is no work currently available in understanding the interface developed, when VARTM processing is adopted to wrap fibers such as carbon and/or glass over concrete structures. This paper investigates the interface formed by carbon fiber processed on to a concrete surface using the VARTM technique. Various surface treatments, including sandblasting, were performed to study the pull-off tensile test to find a potential prepared surface. A single-lap shear test was used to study the bond strength of CFRP fabric/epoxy composite adhered to concrete. Carbon fiber wraps incorporating Sikadur HEX 103C and low viscosity epoxy resin Sikadur 300 were considered in VARTM processing of concrete specimens.

A Study on the Atmospheric Pressure Control of the VARTM Process for Increasing the Fiber Volume Fraction and Reducing Void (섬유부피분율 증가와 공극 감소를 위한 VARTM 공정의 대기압 제어에 관한 연구)

  • Kwak, Seong-Hun;Kim, Tae-Jun;Tak, Yun-Hak;Kwon, Sung-Il;Lee, Jea-Hyun;Kim, Sang-Yong;Lee, Jong-Cheon
    • Composites Research
    • /
    • v.34 no.2
    • /
    • pp.88-95
    • /
    • 2021
  • VARTM (Vacuum-assisted resin transfer molding) process is a low-cost process technology and affiliated with OoA (Out of Autoclave). Besides, it has been widely used in various fields. However, because of its lower quality than the autoclave process, it isn't easy to apply the VARTM process to the aerospace industry, which requires high reliability. The main problem of the VARTM process is the loss of mechanical properties due to the low fiber volume fraction and high void content in comparison to the autoclave. Therefore, many researchers have studied to reduce void and increase fiber volume fraction. This study examines whether the method of controlling atmospheric pressure could increase the fiber volume fraction and reduce void during the resin impregnation process. Reliability evaluation was confirmed by compressive strength test, fiber volume fraction analysis, and optical microscopy. As a result, it was confirmed that increasing the atmospheric pressure step by step in the VARTM process of impregnating the preform with resin effectively increases the fiber volume fraction and reduces void.

Three-Dimensional Numerical Simulation of Mold-Filing and Void Formation During Vacuum-Assisted Resin Transfer Molding (VARTM 공정에서의 금형 충전 및 기공 형성에 관한 3차원 수치해석)

  • 강문구;배준호;이우일
    • Composites Research
    • /
    • v.17 no.3
    • /
    • pp.1-7
    • /
    • 2004
  • In the vacuum assisted RTM (VARTM) process that has become the center of attention for manufacturing massive composite structures, a good evacuation of air in the fiber preform is recognized as the prime factor. The microvoids, or the dry spots, are formed as a result of improper gate/vent locations and the mold geometry. The non-uniform resin velocity at the flow front leads to the formation of microvoids in the fibers, whereas the air in the microvoids can migrate along with the resin flow during mold filling. The residual air in the internal voids of a composite structure may cause a degradation of the mechanical properties as well as the structural failure. In this study, a unified macro- and micro analysis methods were developed to investigate the formation and transport of air in resin during VARTM process. A numerical simulation program was developed to analyze the three-dimensional flow pattern as well as the macro- and microscopic distribution of air in a composite part fabricated by VARTM process.

Radial flow advancement in multi-layered preform for resin transfer molding

  • Shin, K.S.;Song, Y.S.;Youn, J.R.
    • Korea-Australia Rheology Journal
    • /
    • v.18 no.4
    • /
    • pp.217-224
    • /
    • 2006
  • Rapid flow advancement without void formation is essential in the liquid composite molding (LCM) such as resin transfer molding (RTM) and vacuum assisted resin transfer molding (VARTM). A highly permeable layer in multi-layered preform has an important role in improvement of the flow advancement. In this study, a multi-layered preform which consists of three layers is employed. Radial flow experiment is carried out for the multi-layered preform. A new analytic model for advancement of flow front is proposed and effective permeability is defined. The effective permeability for the multi-layered preform is obtained analytically and compared with experimental results. Compaction test is performed to determine the exact fiber volume traction of each layer in the multi-layered preform. Transverse permeability employed in modeling is measured experimentally unlike the previous studies. Accurate prediction of flow advancement is of great use for saving the processing time and enhancing product properties of the final part.