• Title/Summary/Keyword: VLSI 어레이

Search Result 51, Processing Time 0.024 seconds

Design and Analysis of a Digit-Serial $AB^{2}$ Systolic Arrays in $GF(2^{m})$ ($GF(2^{m})$ 상에서 새로운 디지트 시리얼 $AB^{2}$ 시스톨릭 어레이 설계 및 분석)

  • Kim Nam-Yeun;Yoo Kee-Young
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.32 no.4
    • /
    • pp.160-167
    • /
    • 2005
  • Among finite filed arithmetic operations, division/inverse is known as a basic operation for public-key cryptosystems over $GF(2^{m})$ and it is computed by performing the repetitive $AB^{2}$ multiplication. This paper presents a digit-serial-in-serial-out systolic architecture for performing the $AB^2$ operation in GF$(2^{m})$. To obtain L×L digit-serial-in-serial-out architecture, new $AB^{2}$ algorithm is proposed and partitioning, index transformation and merging the cell of the architecture, which is derived from the algorithm, are proposed. Based on the area-time product, when the digit-size of digit-serial architecture, L, is selected to be less than about m, the proposed digit-serial architecture is efficient than bit-parallel architecture, and L is selected to be less than about $(1/5)log_{2}(m+1)$, the proposed is efficient than bit-serial. In addition, the area-time product complexity of pipelined digit-serial $AB^{2}$ systolic architecture is approximately $10.9\%$ lower than that of nonpipelined one, when it is assumed that m=160 and L=8. Additionally, since the proposed architecture can be utilized for the basic architecture of crypto-processor and it is well suited to VLSI implementation because of its simplicity, regularity and pipelinability.

An Efficient Multiplexer-based AB2 Multiplier Using Redundant Basis over Finite Fields

  • Kim, Keewon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.1
    • /
    • pp.13-19
    • /
    • 2020
  • In this paper, we propose a multiplexer based scheme that performs modular AB2 multiplication using redundant basis over finite field. Then we propose an efficient multiplexer based semi-systolic AB2 multiplier using proposed scheme. We derive a method that allows the multiplexers to perform the operations in the cell of the modular AB2 multiplier. The cell of the multiplier is implemented using multiplexers to reduce cell latency. As compared to the existing related structures, the proposed AB2 multiplier saves about 80.9%, 61.8%, 61.8%, and 9.5% AT complexity of the multipliers of Liu et al., Lee et al., Ting et al., and Kim-Kim, respectively. Therefore, the proposed multiplier is well suited for VLSI implementation and can be easily applied to various applications.

Efficient Semi-systolic AB2 Multiplier over Finite Fields

  • Kim, Keewon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.1
    • /
    • pp.37-43
    • /
    • 2020
  • In this paper, we propose an efficient AB2 multiplication algorithm using SPB(shifted polynomial basis) over finite fields. Using the feature of the SPB, we split the equation for AB2 multiplication into two parts. The two partitioned equations are executable at the same time, and we derive an algorithm that processes them in parallel. Then we propose an efficient semi-systolic AB2 multiplier based on the proposed algorithm. The proposed multiplier has less area-time (AT) complexity than related multipliers. In detail, the proposed AB2 multiplier saves about 94%, 87%, 86% and 83% of the AT complexity of the multipliers of Wei, Wang-Guo, Kim-Lee, Choi-Lee, respectively. Therefore, the proposed multiplier is suitable for VLSI implementation and can be easily adopted as the basic building block for various applications.

Efficient Semi-systolic Montgomery multiplier over GF(2m)

  • Keewon, Kim
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.2
    • /
    • pp.69-75
    • /
    • 2023
  • Finite field arithmetic operations play an important role in a variety of applications, including modern cryptography and error correction codes. In this paper, we propose an efficient multiplication algorithm over finite fields using the Montgomery multiplication algorithm. Existing multipliers can be implemented using AND and XOR gates, but in order to reduce time and space complexity, we propose an algorithm using NAND and NOR gates. Also, based on the proposed algorithm, an efficient semi-systolic finite field multiplier with low space and low latency is proposed. The proposed multiplier has a lower area-time complexity than the existing multipliers. Compared to existing structures, the proposed multiplier over finite fields reduces space-time complexity by about 71%, 66%, and 33% compared to the multipliers of Chiou et al., Huang et al., and Kim-Jeon. As a result, our multiplier is proper for VLSI and can be successfully implemented as an essential module for various applications.

Deinterlacing Method for improving Motion Estimator based on multi arithmetic Architecture (다중연산구조기반의 고밀도 성능향상을 위한 움직임추정의 디인터레이싱 방법)

  • Lee, Kang-Whan
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.44 no.1
    • /
    • pp.49-55
    • /
    • 2007
  • To improved the multi-resolution fast hierarchical motion estimation by using de-interlacing algorithm that is effective in term of both performance and VLSI implementation, is proposed so as to cover large search area field-based as well as frame based image processing in SoC design. In this paper, we have simulated a various picture mode M=2 or M=3. As a results, the proposed algorithm achieved the motion estimation performance PSNR compare with the full search block matching algorithm, the average performance degradation reached to -0.7dB, which did not affect on the subjective quality of reconstructed images at all. And acquiring the more desirable to adopt design SoC for the fast hierarchical motion estimation, we exploit foreground and background search algorithm (FBSA) base on the dual arithmetic processor element(DAPE). It is possible to estimate the large search area motion displacement using a half of number PE in general operation methods. And the proposed architecture of MHME improve the VLSI design hardware through the proposed FBSA structure with DAPE to remove the local memory. The proposed FBSA which use bit array processing in search area can improve structure as like multiple processor array unit(MPAU).

Design of a Pipelined High Performance RSA Crypto_chip (파이프라인 구조의 고속 RSA 암호화 칩 설계)

  • Lee, Seok-Yong;Kim, Seong-Du;Jeong, Yong-Jin
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.28 no.6
    • /
    • pp.301-309
    • /
    • 2001
  • 본 논문에서는 RSA 암호 시스템의 핵심 과정인 모듈로 멱승 연산에 대한 새로운 하드웨어 구조를 제시한다. 본 방식은 몽고메리 곱셈 알고리즘을 사용하였으며 기존의 방법들이 데이터 종속 그래프(DG : Dependence Graph)를 수직으로 매핑한 것과는 달리 여기서는 수평으로 매핑하여 1차원 선형 어레이구조를 구성하였다. 그 결과로 멱승시에 중간 결과값이 순차적으로 나와서 바로 다음 곱셈을 위한 입력으로 들어갈 수 있기 때문에 100%의 처리율(throughput)을 이룰 수 있고, 수직 매핑 방식에 비해 절반의 클럭 횟수로 연산을 해낼 수 있으며 컨트롤 또한 단순해지는 장점을 가진다. 각 PE(Processing Element)는 2개의 전가산기와 3개의 멀티플렉서로 이루어져 있고, 암호키의 비트수를 k비트라 할 때 k+3개의 PE만으로 파이프라인구조를 구현하였다. 1024비트 RSA데이터의 암호 똔느 복호를 완료하는데 2k$^2$+12k+19의 클럭 수가 소요되며 클럭 주파수 100Mhz에서 약 50kbps의 성능을 보인다. 또한, 제안된 하드웨어는 내부 계산 구조의 지역성(locality), 규칙성(regularity) 및 모듈성(modularity) 등으로 인해 실시간 고속 처리를 위한 VLSI 구현에 적합하다.

  • PDF

Design and synthesis of reed-solomon encoder and decoder using modified euclid's algorithm (수정된 유클리드 알고리듬을 적용한 리드솔로몬 부호기 및 복호기의 설계 및 합성)

  • 이상설;송문규
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.23 no.6
    • /
    • pp.1575-1582
    • /
    • 1998
  • Reed-Solomon(RS) code which is especially effective against burst error is studied as a forward error correction technique in this ppaer. The circuits of RS encoder and decoder for ASIC implementation are designed and presented employing modified Euclid's algorithm. The functionalities of the designed circuits are verified though C programs which simulates the circuits over the various errors and erasures. The pipelined circuits using systolic arrays are designed for ASIC realization in VHDL, and verified through the logic simulations. Finally the circuit synthesis of RS encoder and decoder can be achieved.

  • PDF

Fingerprint Sensor Based on a Skin Resistivity with $256{\times}256$ pixel array ($256{\times}256$ 픽셀 어레이 저항형 지문센서)

  • Jung, Seung-Min
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.3
    • /
    • pp.531-536
    • /
    • 2009
  • In this paper, we propose $256{\times}256$ pixel array fingerprint sensor with an advanced circuits for detecting. The pixel level simple detection circuit converts from a small and variable sensing current to binary voltage out effectively. We minimizes an electrostatic discharge(ESD) influence by applying an effective isolation structure around the unit pixel. The sensor circuit blocks were designed and simulated in standard CMOS $0.35{\mu}m$ process. Full custom layout is performed in the unit sensor pixel and auto placement and routing is performed in the full chip.

A Parallel Mode Confocal System using a Micro-Lens and Pinhole Array in a Dual Microscope Configuration (이중 현미경 구조를 이용한 마이크로 렌즈 및 핀홀 어레이 기반 병렬 공초점 시스템)

  • Bae, Sang Woo;Kim, Min Young;Ko, Kuk Won;Koh, Kyung Chul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.11
    • /
    • pp.979-983
    • /
    • 2013
  • The three-dimensional measurement method of confocal systems is a spot scanning method which has a high resolution and good illumination efficiency. However, conventional confocal systems had a weak point in that it has to perform XY axis scanning to achieve FOV (Field of View) vision through spot scanning. There are some methods to improve this problem involving the use of a galvano mirror [1], pin-hole array, etc. Therefore, in this paper we propose a method to improve a parallel mode confocal system using a micro-lens and pin-hole array in a dual microscope configuration. We made an area scan possible by using a combination MLA (Micro Lens Array) and pin-hole array, and used an objective lens to improve the light transmittance and signal-to-noise ratio. Additionally, we made it possible to change the objective lens so that it is possible to select a lens considering the reflection characteristic of the measuring object and proper magnification. We did an experiment using 5X, 2.3X objective lens, and did a calibration of height using a VLSI calibration target.

High-Speed Reed-Solomon Decoder Using New Degree Computationless Modified Euclid´s Algorithm (새로운 DCME 알고리즘을 사용한 고속 Reed-Solomon 복호기)

  • 백재현;선우명훈
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.40 no.6
    • /
    • pp.459-468
    • /
    • 2003
  • This paper proposes a novel low-cost and high-speed Reed-Solomon (RS) decoder based on a new degree computationless modified Euclid´s (DCME) algorithm. This architecture has quite low hardware complexity compared with conventional modified Euclid´s (ME) architectures, since it can remove completely the degree computation and comparison circuits. The architecture employing a systolic away requires only the latency of 2t clock cycles to solve the key equation without initial latency. In addition, the DCME architecture using 3t+2 basic cells has regularity and scalability since it uses only one processing element. The RS decoder has been synthesized using the 0.25${\mu}{\textrm}{m}$. Faraday CMOS standard cell library and operates at 200MHz and its data rate suppots up to 1.6Gbps. For tile (255, 239, 8) RS code, the gate counts of the DCME architecture and the whole RS decoder excluding FIFO memory are only 21,760 and 42,213, respectively. The proposed RS decoder can reduce the total fate count at least 23% and the total latency at least 10% compared with conventional ME architectures.