• Title/Summary/Keyword: VELOCITY

Search Result 23,171, Processing Time 0.039 seconds

Velocity and Flow Friction Characteristic of Working Fluid in Stirling Engine Regenerator (I) - Velocity Characteristic of Working Fluid in Stirling Engine Regenerator - (스털링기관 재생기내의 작동유체 유속 및 마찰저항 특성(I) - 작동유체 유속 특성 -)

  • Kim, T.H.;Choi, C.R.
    • Journal of Biosystems Engineering
    • /
    • v.32 no.6
    • /
    • pp.389-394
    • /
    • 2007
  • The power output of the stirling engine is influenced by the regenerator effectiveness. The regenerator effectiveness is influenced by heat transfer and flow friction loss of the regenerator matrix. In this paper, in order to provide basic data for the design of the regenerator matrix, characteristics of working fluid velocities were investigated by a packed method of matrix in the oscillating flow as the same condition of operation in a Stirling engine. As matrices, two different wire screens were used. The results are summarized as follows; 1. When a regenerator is not filled with any wire screen, working fluid velocity of the oscillating flow shows 1.3 times faster than that of one directional flow. 2. When a regenerator is filled with the wire screen of No.50, working fluid velocity of the oscillating flow reveals 2.5 times faster than that of one directional flow. 3. When a regenerator is filled with the wire screen of No. 100, working fluid velocity of the oscillating flow shows 2 times faster than that of one directional flow, regardless of the number of packed wire screens. 4. Working fluid velocity is decreased wire the increase in number of meshes and packed wire screens.

VELOCITY ESTIMATION OF MOVING TARGETS BY AZIMUTH DIFFERENTIALS OF SAR IMAGES;PRELIMINARY RESULTS

  • Park, Jeong-Won;Jung, Hyung-Sup;Won, Joong-Sun
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.625-628
    • /
    • 2007
  • We present an efficient and robust technique to estimate the velocity of moving targets from a single SAR image. In SAR images, azimuth image shift is a well known phenomenon, which is observed in moving targets having slant-range velocity. Most methods estimated the velocity of moving targets from the distance difference between the road and moving targets or between ship and the ship wake. However, the methods could not be always applied to moving targets because it is difficult to find the road and the ship wake. We adopted a method estimating the velocity of moving targets from azimuth differentials of range-compressed image. This method is based on an assumption that Doppler center frequency shift of moving target causes a phase difference in azimuth differential values. The phase difference is linearly distorted by Doppler rate due to the geometry of SAR image. The linear distortion is eliminated from phase removal procedure, and the constant phase difference is estimated. Finally, range velocity estimates for moving targets are retrieved. This technique is tested using an ENVISAT ASAR image in which several unknown ships are presented. The theoretical accuracy of this technique is discussed by SAR simulation. The advantages and disadvantages of this method over the conventional method are also discussed.

  • PDF

The Effect of Tempering Temperature on Ultrasonic Velocity Property at the Quenched SCM 440 Steel (퀜칭한 SCM 440 강에서 초음파 전파특성에 미치는 템퍼링온도의 영향)

  • Lee, K.W.;Kim, M.I.;Park, U.S.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.4 no.3
    • /
    • pp.54-62
    • /
    • 1991
  • The effect of tempering temperature on the ultrasonic propagation velocity at SCM 440 steel quenched from $870^{\circ}C$ and $1000^{\circ}C$ has been studied by metallurgical and crystallographical observation. The measurements of ultrasonic velocity were made on the specimen by appling an immersion ultrasonic pulse-echo technique with a constant frequency of 10 MHz. The quenched microstructure of this steel was a lath martensite. As the tempering temperature was increased, the martensite was transformed into the tempered martensite composed of cementite and carbide. The ultrasonic velocity increased with increasing the tempering temperature. It was thought that these were resulted from the microstructural transformation. The change of ultrasonic propagation velocity with quenching and tempering heat treatment was resulted from microstrain due to the change of internal stress. Considering these results concerning to the change of ultrasonic propagation velocity. the phenomena of microstructural transformation were estimated. Consequently, it was thought that the degree of quenching and tempered heat treatment of steel could be nondestructively evaluated with the change of ultrasonic propagation velocity.

  • PDF

Ramp Load/Unload Velocity Control of VCM Using BEMF in HDD (램프 로드/언로드 하드디스크 드라이브의 역기전력을 이용한 VCM 속도제어)

  • Jeong, Jun;Kim, Tae-Soo;Kang, Tae-Sik;Jung, Kwang-Jo;Lee, Chul-Woo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.1 s.106
    • /
    • pp.50-56
    • /
    • 2006
  • Since most of small form-factor drives have a load/unload mechanism and the flying height of the head is getting lower as the capacity of disk drives increases, the load/unload velocity becomes one of the important factors to ensure the reliability of the load/unload mechanism. To control the load/unload velocity accurately, velocity sensing is essential. In this paper, we introduce a very practical method that acquires the load/unload velocity from the back electromotive force (BEMF) of a voice coil motor (VCM) and propose a calibration method for measuring the BEMF from a given circuit. Moreover, the effect of calibration error and temperature variation on the measurement of BEMF is shown by simulation. Then, this present method is applied to the load/unload velocity controller and is verified from the experimental result.

Dynamic Behavior of Rotating Cantilever Pipe Conveying Fluid with Moving Mass (이동질량을 가진 유체유동 회전 외팔 파이프의 동특성)

  • Yoon, Han-Ik;Son, In-Soo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.5 s.98
    • /
    • pp.586-594
    • /
    • 2005
  • In this paper, we studied about the effects of the rotating cantilever pipe conveying fluid with a moving mass. The influences of a rotating angular velocity, the velocity of fluid flow and moving mass on the dynamic behavior of a cantilever pipe have been studied by the numerical method. The equation of motion is derived by using the Lagrange's equation. The cantilever pipe is modeled by the Euler-Bernoulli beam theory. When the velocity of a moving mass is constant, the lateral tip-displacement of a cantilever pipe is proportional to the moving mass and the angular velocity. In the steady state, the lateral tip-displacement of a cantilever pipe is more sensitive to the velocity of fluid than the angular velocity, and the axial deflection of a cantilever pipe is more sensitive to the effect of a angular velocity. Totally, as the moving mass is increased, the frequency of a cantilever pipe is decreased in steady state.

Improvement of the Model for Predicting Swing Check Valve Opening (스윙형 역지 밸브 개도 예측 모델 개선)

  • Kim, Yang-seok;Song, Seok-yoon;Kim, Dae-woong;Park, Sung-keun
    • 유체기계공업학회:학술대회논문집
    • /
    • 2004.12a
    • /
    • pp.315-320
    • /
    • 2004
  • Swing check valves are the most common type of check valve in nuclear power plant and need to be operated property to perform their functions and to keep the valve internals stable. However, for a swing check valve disc to remain stable, the opening characteristics should be identified and the upstream flow velocity should be enough to hold the disc fully open and without motion. Thus it is necessary to develop a model for predicting the flow velocity for a given disc opening. In the present study, the disc positions with mean flow velocity were measured for 3 inch and 6 inch swing check valves. Comparison of the measurements with the existing models showed that the models underestimate the mean flow velocity for a given disc position. Therefore, the existing model for predicting swing check valve disc position was improved with the realistic disc impingement area perpendicular to the flow stream and the experimental data. The result showed that the improved model with the best estimate of kb = 0.04 predicts well the disc openings of 6 inch swing check valve, especially in the low velocity region. For better prediction of the disc opening at high flow velocity, however, it is recommended to develop a kb correlation with the disc angle.

  • PDF

MRR model for the CMP Process Considering Relative Velocity (상대속도를 고려한 CMP 공정에서의 연마제거율 모델)

  • 김기현;오수익;전병희
    • Transactions of Materials Processing
    • /
    • v.13 no.3
    • /
    • pp.225-229
    • /
    • 2004
  • Chemical Mechanical Polishing(CMP) process becomes one of the most important semiconductor processes. But the basic mechanism of CMP still does not established. Slurry fluid dynamics that there is a slurry film between a wafer and a pad and contact mechanics that a wafer and a pad contact directly are the two main studies for CMP. This paper based on the latter one, especially on the abrasion wear model. Material Removal Rate(MRR) is calculated using the trajectory length of every point on a wafer during the process time. Both the rotational velocity of a wafer and a pad and the wafer oscillation velocity which has omitted in other studies are considered. For the purpose of the verification of our simulation, we used the experimental results of S.H.Li et al. The simulation results show that the tendency of the calculated MRR using the relative velocity is very similar to the experimental results and that the oscillation effect on MRR at a real CMP condition is lower than 1.5%, which is higher than the relative velocity effect of wafer, and that the velocity factor. not the velocity itself, should be taken into consideration in the CMP wear model.

Measurement and Analysis of Moving Velocity of Elementary School Students Under a Escape Drill (초등학생의 피난 훈련 상황하에서의 이동속도 측정 및 분석에 관한 연구)

  • 김응식;이정수;김수영
    • Fire Science and Engineering
    • /
    • v.17 no.4
    • /
    • pp.1-6
    • /
    • 2003
  • This study measures the various moving velocities of elementary school children under situation of fire drill and suggests the methods of analysis. The velocities are such as the exiting velocity at the door of the classroom, personal walking velocity at corridor, velocity according to density of crowd and personal walking velocity at stairway. For these measurement an elementary school in Daejeon is chosen and 15 girls and 15 boys are selected in each grade. Finally speed data of the children is obtained and we can apply this data for the evacuation simulation of a school.

A Study on the Evaluation of the Friction and Wear Properties for Normalized Ductile Cast Iron (노멀라이징 열처리한 구상 흑연 주철의 마찰.마모특성 평가에 관한 연구)

  • 김윤해
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.23 no.4
    • /
    • pp.440-446
    • /
    • 1999
  • This study is mainly concerned with the friction and wear properties for the specimens of crank shaft which are made of ductile cast iron. The friction and wear tests were carried out for the nor-malized ductile cast iron specimens and their properties were compared with each other at reheat-ing temperatures(550^{\circC,\; 600^{\circ}C,\; 650^{\circ}$) and in dry condition at different friction velocity(0.94 m/s 1.88m/s 2.83m/s) range. After austenized at $910^{\circ}C$ it is observed that the higher the reheating temperature is the hardness becomes decrease which is supposedly attributed to the fact that the amount of pearlite austenite matrix is rduced by reheating after normalizing and that as the reheating temperature goes up the pearlite generated is less and the interval between the pearlites were widened at last to make pearlite globular. At the low velocity the friction coefficient increase in the beginning and gets stabilized as the sliding distance increases. As the friction velocity grows the friction coefficient decreases suppos-edly since the abrasive wear is heavier at low velocity than at the high velocity as the friction tem-perature at low velocity is lower than at high velocity.

  • PDF

Characteristics of Uni-directional Diverter for Gravimetric Calibration Facility (액체용 중량식 유량계 교정장치의 일방향 Diverter 특성연구)

  • Nam, Ki Han;Park, Jong Ho;Kim, Hong Jip
    • The KSFM Journal of Fluid Machinery
    • /
    • v.20 no.1
    • /
    • pp.59-64
    • /
    • 2017
  • Diverter is an essential element in gravimetric calibration method of flowmeter. Error of diverter are influenced by flow velocity profile of nozzle outlet, motion velocity of diverter and detecting location. That's why, time detection position of diverter is tuned through repetitive test for minimizing error of diverter. Further the diverter must be compared with the other institutions test since the influence on the accuracy of the flow meter used in the test. In this paper, errors (flow velocity profile of nozzle outlet, motion velocity of diverter and detecting location) of diverter are decreased by produced uni-direction diverter and error of gravimetric calibration system is decreased. Uni-direction diverter is calibrated by gravimetric calibration system with precision flowmeter, the flowmeter is calibrated by pipe prover and other institutions and uni-direction diverter is evaluated. Uni-direction diverter is not influenced by flow velocity profile of nozzle outlet, motion velocity of diverter and detecting location. As a result, Uni-direction diverter can calibrate in wider scope since increasing ratio of maximum and minimum flow rate of uni-direction diverter.