• 제목/요약/키워드: User Feedback Evaluation

Search Result 78, Processing Time 0.023 seconds

A Haptic Pottery Modeling System Using GPU-Based Circular Sector Element Method (GPU 기반의 부채꼴 요소법을 이용한 햅틱 도자기 모델링 시스템)

  • Lee, Jae-Bong;Han, Gab-Jong;Choi, Seung-Moon
    • Journal of KIISE:Software and Applications
    • /
    • v.37 no.8
    • /
    • pp.611-619
    • /
    • 2010
  • This paper presents an efficient modeling system of virtual pottery in which the user can deform a body of virtual clay with a haptic tool for E-learning. We propose a Circular Sector Element Method (CSEM) which represents the virtual pottery with a set of circular sector elements based on the cylindrical symmetry of pottery. Efficient algorithms for collision detection and response, interactions between adjacent elements, and GPU-based visual-haptic synchronization are designed and implemented for the CSEM. Empirical evaluation showed that the modeling system is computationally efficient with finer details and provides convincing model deformation and force feedback. The developed system, if combined with educational contents, is expected to be used as an effective E-learning platform for elementary school students.

Development of Apparel Coordination System Using Personalized Preference on Semantic Web (시맨틱 웹에서 개인화된 선호도를 이용한 의상 코디 시스템 개발)

  • Eun, Chae-Soo;Cho, Dong-Ju;Lee, Jung-Hyun;Jung, Kyung-Yong
    • The Journal of the Korea Contents Association
    • /
    • v.7 no.4
    • /
    • pp.66-73
    • /
    • 2007
  • Internet is a part of our common life and tremendous information is cumulated. In these trends, the personalization becomes a very important technology which could find exact information to present users. Previous personalized services use content based filtering which is able to recommend by analyzing the content and collaborative filtering which is able to recommend contents according to preference of users group. But, collaborative filtering needs the evaluation of some amount of data. Also, It cannot reflect all data of users because it recommends items based on data of some users who have similar inclination. Therefore, we need a new recommendation method which can recommend prefer items without preference data of users. In this paper, we proposed the apparel coordination system using personalized preference on the semantic web. This paper provides the results which this system can reduce the searching time and advance the customer satisfaction measurement according to user's feedback to system.

A Comparative Study on the Evolution Stage of E-Commerce & Smart Commerce Service Focused on the Extended Spiral Evolution Model (E-커머스, 스마트 커머스의 단계별 진화에 따른 비교 연구 - 나선형 진화 모형의 확장을 중심으로)

  • Lee, Sang-Ok;Lee, Sang-Ho
    • Journal of Digital Contents Society
    • /
    • v.18 no.7
    • /
    • pp.1281-1291
    • /
    • 2017
  • This study examines the evolution of e-commerce industry over the past 20 years until the emergence of a new type of commerce, smart commerce, focused on Facebook. The researcher explained the evolutionary process step by step, focusing on the evolution of business model, evolution of platform, evolution of customer service value, analysis and evaluation, applying spiral evolution theory, Based on the axes, we applied the exploration and exploitation theory from the viewpoint of the operator and the user, analysis of innovative technology and customer feedback, and proposed an innovative business model. And researchers expect that theoretical and practical contribution of e-commerce industries and policies, through study of industry evolution.

Efficient Channel Estimation and Packet Scheduling Scheme for DVB-S2 ACM Systems (DVB-S2 ACM 시스템을 위한 효율적인 채널 예측 및 패킷 스케줄링 기법)

  • Kang, Dong-Bae;Park, Man-Kyu;Chang, Dae-Ig;Oh, Deock-Gil
    • Journal of Satellite, Information and Communications
    • /
    • v.7 no.1
    • /
    • pp.65-74
    • /
    • 2012
  • The QoS guarantee for the forward link in satellite communication networks is very important because there are a variety of packets with multiplexing. Especially, the packets are processed depending on the available bandwidth in satellite network changing the wireless channel state in accordance with weather condition. The DVB-S2 increases the transmission efficiency by applying the adaptive coding and modulation (ACM) techniques as a countermeasure of rain attenuations. However, the channel estimation algorithm is required to support the ACM techniques that select the MODCOD values depending on the feedback data transmitted by RCSTs(Return Channel via Satellite Terminal) because satellite communication networks have a long propagation delay. In this paper, we proposed the channel estimation algorithm using rain attenuation values and reference data and the packet scheduling scheme to support the QoS and fairness. As a result of performance evaluation, we showed that proposed algorithm exactly predicts the channel conditions and supports bandwidth fairness to the individual RCST and guarantees QoS for user traffics.

Affordance Elements According to the Usability of the Interface of Immersive Virtual Reality Clinical Skill Content (몰입형 가상현실 의료 술기 콘텐츠의 인터페이스 사용성에 따른 어포던스 하위 평가 요소에 관한 연구)

  • Hwang, Hyo-Hyon;Choi, Yoo-Mi
    • The Journal of the Korea Contents Association
    • /
    • v.22 no.6
    • /
    • pp.307-318
    • /
    • 2022
  • Virtual reality is actively used in the medical field as a learning effectiveness that induces immersion, but research on the factors that induce learning immersion is insufficient. Therefore, this study extracted the usability and cognitive affordance evaluation elements of the interface through literature research and selected four types of virtual reality medical contents to conduct a Useability-Test for experts. Based on this, an interface design method according to virtual reality medical technology content was proposed. In summary, it can be seen that the information-providing interface affects immersion due to visibility, distance from the experience's gaze, color harmony, uniform visualization, feedback, reaction speed, and expected changes resulting from manipulation, and does not impair immersion. This study has limitations in generalization using limited content, so it is expected that continuous research will discuss the development of standardized guides in interface design and the precision of interface design research from a user perspective.

Search Re-ranking Through Weighted Deep Learning Model (검색 재순위화를 위한 가중치 반영 딥러닝 학습 모델)

  • Gi-Taek An;Woo-Seok Choi;Jun-Yong Park;Jung-Min Park;Kyung-Soon Lee
    • The Transactions of the Korea Information Processing Society
    • /
    • v.13 no.5
    • /
    • pp.221-226
    • /
    • 2024
  • In information retrieval, queries come in various types, ranging from abstract queries to those containing specific keywords, making it a challenging task to accurately produce results according to user demands. Additionally, search systems must handle queries encompassing various elements such as typos, multilingualism, and codes. Reranking is performed through training suitable documents for queries using DeBERTa, a deep learning model that has shown high performance in recent research. To evaluate the effectiveness of the proposed method, experiments were conducted using the test collection of the Product Search Track at the TREC 2023 international information retrieval evaluation competition. In the comparison of NDCG performance measurements regarding the experimental results, the proposed method showed a 10.48% improvement over BM25, a basic information retrieval model, in terms of search through query error handling, provisional relevance feedback-based product title-based query expansion, and reranking according to query types, achieving a score of 0.7810.

Building Error-Reflected Models for Collaborative Filtering Recommender System (협업적 여과 추천 시스템을 위한 에러반영 모델 구축)

  • Kim, Heung-Nam;Jo, Geun-Sik
    • The KIPS Transactions:PartD
    • /
    • v.16D no.3
    • /
    • pp.451-462
    • /
    • 2009
  • Collaborative Filtering (CF), one of the most successful technologies among recommender systems, is a system assisting users in easily finding the useful information. However, despite its success and popularity, CF encounters a serious limitation with quality evaluation, called cold start problems. To alleviate this limitation, in this paper, we propose a unique method of building models derived from explicit ratings and applying the models to CF recommender systems. The proposed method is divided into two phases, an offline phase and an online phase. First, the offline phase is a building pre-computed model phase in which most of tasks can be conducted. Second, the online phase is either a prediction or recommendation phase in which the models are used. In a model building phase, we first determine a priori predicted rating and subsequently identify prediction errors for each user. From this error information, an error-reflected model is constructed. The error-reflected model, which is reflected average prior prediction errors of user neighbors and item neighbors, can make accurate predictions in the situation where users or items have few opinions; this is known as the cold start problems. In addition, in order to reduce the re-building tasks, the error-reflected model is designed such that the model is updated effectively and users'new opinions are reflected incrementally, even when users present a new rating feedback.

Deep Learning Algorithm and Prediction Model Associated with Data Transmission of User-Participating Wearable Devices (사용자 참여형 웨어러블 디바이스 데이터 전송 연계 및 딥러닝 대사증후군 예측 모델)

  • Lee, Hyunsik;Lee, Woongjae;Jeong, Taikyeong
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.25 no.6
    • /
    • pp.33-45
    • /
    • 2020
  • This paper aims to look at the perspective that the latest cutting-edge technologies are predicting individual diseases in the actual medical environment in a situation where various types of wearable devices are rapidly increasing and used in the healthcare domain. Through the process of collecting, processing, and transmitting data by merging clinical data, genetic data, and life log data through a user-participating wearable device, it presents the process of connecting the learning model and the feedback model in the environment of the Deep Neural Network. In the case of the actual field that has undergone clinical trial procedures of medical IT occurring in such a high-tech medical field, the effect of a specific gene caused by metabolic syndrome on the disease is measured, and clinical information and life log data are merged to process different heterogeneous data. That is, it proves the objective suitability and certainty of the deep neural network of heterogeneous data, and through this, the performance evaluation according to the noise in the actual deep learning environment is performed. In the case of the automatic encoder, we proved that the accuracy and predicted value varying per 1,000 EPOCH are linearly changed several times with the increasing value of the variable.

Development of Simulator for Analyzing Intercept Performance of Surface-to-air Missile (지대공미사일 요격 성능 분석 시뮬레이터 개발)

  • Kim, Ki-Hwan;Seo, Yoon-Ho
    • Journal of the Korea Society for Simulation
    • /
    • v.19 no.1
    • /
    • pp.63-71
    • /
    • 2010
  • In modern war, Intercept Performance of SAM(Surface to Air Missile) is gaining importance as range and precision of Missile and Guided Weapon on information warfare have been improved. An aerial defence system using Surface-to-air Radar and Guided Missile is needed to be built for prediction and defense from threatening aerial attack. When developing SAM, M&S is used to free from a time limit and a space restriction. M&S is widely applied to education, training, and design of newest Weapon System. This study was conducted to develop simulator for evaluation of Intercept Performance of SAM. In this study, architecture of Intercept Performance of SAM analysis simulator for estimation of Intercept Performance of various SAM was suggested and developed. The developed Intercept Performance of SAM analysis simulator was developed by C++ and Direct3D, and through 3D visualization using the Direct3D, it shows procedures of the simulation on a user animation window. Information about design and operation of Fighting model is entered through input window of the simulator, and simulation engine consisted of Object Manager, Operation Manager, and Integrated Manager conducts modeling and simulation automatically using the information, so the simulator gives user feedback in a short time.

Development and Efficacy Validation of an ICF-Based Chatbot System to Enhance Community Participation of Elderly Individuals with Mild Dementia in South Korea (우리나라 경도 치매 노인의 지역사회 참여 증진을 위한 ICF 기반 Decision Tree for Chatbot 시스템 개발과 효과성 검증)

  • Haewon Byeon
    • Journal of Advanced Technology Convergence
    • /
    • v.3 no.3
    • /
    • pp.17-27
    • /
    • 2024
  • This study focuses on the development and evaluation of a chatbot system based on the International Classification of Functioning, Disability, and Health (ICF) framework to enhance community participation among elderly individuals with mild dementia in South Korea. The study involved 12 elderly participants who were living alone and had been diagnosed with mild dementia, along with 15 caregivers who were actively involved in their daily care. The development process included a comprehensive needs assessment, system design, content creation, natural language processing using Transformer Attention Algorithm, and usability testing. The chatbot is designed to offer personalized activity recommendations, reminders, and information that support physical, social, and cognitive engagement. Usability testing revealed high levels of user satisfaction and perceived usefulness, with significant improvements in community activities and social interactions. Quantitative analysis showed a 92% increase in weekly community activities and an 84% increase in social interactions. Qualitative feedback highlighted the chatbot's user-friendly interface, relevance of suggested activities, and its role in reducing caregiver burden. The study demonstrates that an ICF-based chatbot system can effectively promote community participation and improve the quality of life for elderly individuals with mild dementia. Future research should focus on refining the system and evaluating its long-term impact.