Acknowledgement
This work was supported by the Technology Innovation Program no. 20002781, funded by the Ministry of Trade, Industry & Energy(MOTIE). This work was supported by Sehan Univ. grant in 2020.
References
- Azzeh, J., Zahran, B., and Alqadi, Z. (2018). Salt and pepper noise: Effects and removal, JOIV, International Journal on Informatics Visualization, 2(4), 252-256. https://doi.org/10.30630/joiv.2.4.151
- Bierut, L. J. (2010). Convergence of genetic findings for nicotine dependence and smoking related diseases with chromosome 15q24-25, Trends in Pharmacological Sciences, 31(1), 46-51. https://doi.org/10.1016/j.tips.2009.10.004
- Buckman, J., Roy, A., Raffel, C., and Goodfellow, I. (2018). Thermometer encoding: One hot way to resist adversarial examples, International Conference on Learning Representations.
- Ciresan, D. C., Giusti, A., Gambardella, L. M., and Schmidhuber, J. (2013). Mitosis detection in breast cancer histology images with deep neural networks. In International conference on medical image computing and computer-assisted intervention, Springer, Berlin, Heidelberg. 411-418.
- CNP. (2020). COVID-19 Health monitoring function enhancement, https://www.chosun.com/economy/tech_it/2020/10/03/F56YLXSXKFHMFOI3DLMPDTBP24/ (Accessed on Oct. 4th, 2020)
- Dolph, C. V., Alam, M., Shboul, Z., Samad, M. D., and Iftekharuddin, K. M. (2017). Deep learning of texture and structural features for multiclass Alzheimer's disease classification, 2017 International Joint Conference on Neural Networks (IJCNN) 2259-2266.
- Du, M., Liu, N., Song, Q., and Hu, X. (2018). Towards explanation of dnn-based prediction with guided feature inversion, Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 1358-1367
- Esakkirajan, S., Veerakumar, T., Subramanyam, A. N., and PremChand, C. H. (2011). Removal of high density salt and pepper noise through modified decision based unsymmetric trimmed median filter, IEEE Signal processing Letters, 18(5), 287-290. https://doi.org/10.1109/LSP.2011.2122333
- Freudenberg, J., and Propping, P. (2002). A similarity-based method for genome-wide prediction of disease-relevant human genes, Bioinformatics, 18 (suppl_2), S110-S115. https://doi.org/10.1093/bioinformatics/18.suppl_2.S110
- Fu, B., Zhao, X., Li, Y., Wang, X., and Ren, Y. (2019). A convolutional neural networks denoising approach for salt and pepper noise, Multimedia Tools and Applications, 78(21), 30707-30721. https://doi.org/10.1007/s11042-018-6521-4
- Furberg, H., Kim, Y., Dackor, J., Boerwinkle, E., Franceschini, N., Ardissino, D., ... and Absher, D. (2010). Genome-wide meta-analyses identify multiple loci associated with smoking behavior, Nature Genetics, 42(5), 441. https://doi.org/10.1038/ng.571
- Grapov, D., Fahrmann, J., Wanichthanarak, K., and Khoomrung, S. (2018). Rise of deep learning for genomic, proteomic, and metabolomic data integration in precision medicine, Omics: A Journal of Integrative Biology, 22(10), 630-636. https://doi.org/10.1089/omi.2018.0097
- Hannun, A. Y., Rajpurkar, P., Haghpanahi, M., Tison, G. H., Bourn, C., Turakhia, M. P., and Ng, A. Y. (2019). Cardiologist-level arrhythmia detection and classification in ambulatory electrocardiograms using a deep neural network, Nature Medicine, 25(1), 65. https://doi.org/10.1038/s41591-018-0268-3
- Hamet, P., and Tremblay, J. (2017). Artificial intelligence in medicine, Metabolism, 69, S36-S40.
- Lee, H-S. and Jeong, T., (2019) Institutional Review Board, no. 201901-HR-003-02. 2019. 4. 26. pp. 1-15.
- Jeong, T. (2020). Time-series Data Classification and Analysis associated with Machine Learning Algorithms for Cognitive Perception and Phenomenon. IEEE Access, 12(3), 1-10, https://doi.org/10.1109/ACCESS.2020.3018477
- Jeong, T. (2020). Deep Neural Network Algorithm Feedback Model with Behavioral Intelligence and Forecast Accuracy, Symmetry, 12(9), 1465-1476, https://doi.org/10.3390/sym12091465
- Koul, A., Arnoult, E., Lounis, N., Guillemont, J., and Andries, K. (2011). The challenge of new drug discovery for tuberculosis, Nature, 469(7331), 483-490. https://doi.org/10.1038/nature09657
- Mak, K. K., and Pichika, M. R. (2019). Artificial intelligence in drug development: present status and future prospects, Drug Discovery Today, 24(3), 773-780. https://doi.org/10.1016/j.drudis.2018.11.014
- Mythili, T., Mukherji, D., Padalia, N., and Naidu, A. (2013). A heart disease prediction model using SVM-Decision Trees-Logistic Regression (SDL), International Journal of Computer Applications, 68(16), 134-142
- Klok, F. A., Boon, G. J., Barco, S., Endres, M., Geelhoed, J. M., Knauss, S., ... and Siegerink, B. (2020). The Post-COVID-19 Functional Status scale: a tool to measure functional status over time after COVID-19, European Respiratory Journal, 56(1), 97-106
- Lambrechts, D., Buysschaert, I., Zanen, P., Coolen, J., Lays, N., Cuppens, H., ... and Wijmenga, C. (2010). The 15q24/25 susceptibility variant for lung cancer and chronic obstructive pulmonary disease is associated with emphysema, American Journal of Respiratory and Critical Care Medicine, 181(5), 486-493. https://doi.org/10.1164/rccm.200909-1364OC
- Pittman, J., Huang, E., Dressman, H., Horng, C. F., Cheng, S. H., Tsou, M. H., ... and Nevins, J. R. (2004). Integrated modeling of clinical and gene expression information for personalized prediction of disease outcomes, Proceedings of the National Academy of Sciences, 101(22), 8431-8436. https://doi.org/10.1073/pnas.0401736101
- Raaschou-Nielsen, O., Sorensen, M., Overvad, K., Tjonneland, A., and Vogel, U. (2008). Polymorphisms in nucleotide excision repair genes, smoking and intake of fruit and vegetables in relation to lung cancer, Lung Cancer, 59(2), 171-179. https://doi.org/10.1016/j.lungcan.2007.08.018
- Reesink, H. W., Engelfriet, C. P., Schennach, H., Gassner, C., Wendel, S., Fontão‐ Wendel, R., ... and Pham, B. N. (2008). Donors with a rare pheno (geno) type. Vox sanguinis, 95(3), 236-253. https://doi.org/10.1111/j.1423-0410.2008.01084.x
- Sathyanarayana, A., Joty, S., Fernandez-Luque, L., Ofli, F., Srivastava, J., Elmagarmid, A., and Taheri, S. (2016). Sleep quality prediction from wearable data using deep learning, JMIR mHealth and uHealth, 4(4), e125. https://doi.org/10.2196/mhealth.6562
- Walker R. J. (2014). Seeing ourselves through technology: How we use selfies, blogs and wearable devices to see and shape ourselves, Springer Nature.
- Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., Manzagol, P. A., and Bottou, L. (2010). Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion, Journal of Machine Learning Research, 11(12), 187-199
- Zhang, L., and Wu, X. (2006). An Edge-guided Image Interpolation Algorithm via Directional Filtering and Data Fusion, IEEE Transactions on Image Processing, 15(8), 2226-2238. https://doi.org/10.1109/TIP.2006.877407