최근 컴퓨터 그래픽 기술과 영상 처리 기술의 발달로 현실의 공간 및 물체 정보를 3차원 데이터로 표현하는 포인트 클라우드 기술에 관한 관심이 증대되고 있다. 특히, 포인트 클라우드 기술은 공간 정보를 정밀하게 제공할 수 있어 AR (Augmented Reality)/VR (Virtual Reality), 자율 주행 자동차 분야 등 높은 관심을 받고 있다. 그러나 기존의 2차원 영상보다 많은 데이터가 필요로 되는 3차원 포인트 클라우드 콘텐츠를 사용자에게 서비스하기 위해서는 다양한 기술 개발이 요구된다. 이러한 문제점을 해결하기 위해 국제 표준화 기구인 MPEG (Moving Picture Experts Group)에서는 효율적인 압축 및 전송 방안에 대해 논의를 진행 중이다. 본 논문에서는 기존의 MPEG-DASH (Dynamic Adaptive Streaming over HTTP)-SRD (Spatial Relationship Description) 기술의 확장을 통해 3차원 포인트 클라우드 콘텐츠의 영역 분할 전송 방안을 제안하고, 네트워크 상황뿐 아니라 사용자의 요구에 따라 선택적으로 품질 파라미터를 결정할 수 있도록 MPEG-DASH 표준에서 정의한 시그널링 메시지에 품질 파라미터를 추가로 정의한다. 또한, ROUTE (Real time Object delivery Over Unidirectional Transport)/DASH 기반 이종망 환경의 검증플랫폼을 설계하고, 결과를 통해 제안한 기술의 타당성을 확인한다.
5G 네트워크는 차세대 통신기술로서 4G 네트워크 대비 빠른 속도, 짧은 통신 지연, 높은 연결성을 기반으로 대량의 트래픽 처리가 가능하다. 이에 따라 4차 산업혁명의 핵심 기술로 대두되어 그 중요성이 증가하고 있다. 이러한 5G 네트워크 환경에서 기지국은 그 특성상 높은 밀도로 도심 전역에 설치되어 있으며, 사용자 단말과 연결되어 서비스를 제공한다. 따라서 악의적인 공격자에 의한 피해가 기지국에 발생하는 경우, 사용자 및 사회 전반에 큰 피해를 줄 것으로 예상된다. 2016년 뉴욕타임즈 기사에 따르면 중국의 특정 서버로 사용자 데이터를 전송하는 백도어로 추정되는 소프트웨어가 미국 내 안드로이드 기기, 자동차와 같은 스마트 기기에 포함되어 있다고 보도되었다. 이후 통신 장비에 백도어 설치에 대한 이슈가 지속적으로 제기되었으며, 5G 기지국과 같은 통신장비에 대한 안전성 확보의 필요성이 대두되었다. 따라서 본 논문에서는 5G 기지국을 대상으로 체계적인 방법론인 위협모델링을 사용하여 도출한 보안기능요구사항과 백도어 이슈에 대응할 수 있는 수준의 보안보증요구사항을 제안한다. 본 논문에서 제안하는 보안요구사항은 5G 기지국에 대한 보안성평가기준으로서 안전한 네트워크 환경을 구성하기 위한 기지국 설계 및 개발에 사용될 수 있다.
움직이는 UAV는 많은 위치에너지와 운동에너지를 가지므로 지상으로 추락하는 경우 많은 충격량을 가질 수 있다. 이는 인명피해로 연결될 수 있기 때문에 본 논문에서는 UAV 비행경로 상의 인구밀집지역을 위험구역으로 정의하였다. 기존의 UAV 경로비행은 사용자에 의해 미리 설정된 경로만을 운행하는 수동적인 형태였다. 일부 UAV는 경로비행 중 장애물을 회피하는 시스템 등 안전기능을 포함하고 있지만, 실시간 비행환경변화에 대응하기에는 부족하다. UAV 경로비행에 공공 빅데이터를 활용할 경우, 위험구역을 검출하고 회피비행을 수행할 수 있어서 실시간 비행환경변화에 대한 대응이 향상될 수 있다. 따라서 본 논문에서는 실시간으로 수집된 빅데이터를 활용하여 위험구역을 회피하는 최적경로 비행 방안을 제안한다. 실험 결과, 제안하는 자동경로비행에서 목적지와 목적지에 따른 경로를 지정할 경우, 실시간으로 위험지역을 판단하여 최적 우회경로로 비행하는 것을 확인하였다. 추후 회피방안에 따라 비행하여 획득하는 영상의 질적 만족도를 높일 수 있는 방안을 연구할 예정이다.
Nam, Kyoung Hyup;Seo, Il;Kim, Dong Hwan;Lee, Jae Il;Choi, Byung Kwan;Han, In Ho
Journal of Korean Neurosurgical Society
/
제62권4호
/
pp.442-449
/
2019
Objective : Bone mineral density (BMD) is an important consideration during fusion surgery. Although dual X-ray absorptiometry is considered as the gold standard for assessing BMD, quantitative computed tomography (QCT) provides more accurate data in spine osteoporosis. However, QCT has the disadvantage of additional radiation hazard and cost. The present study was to demonstrate the utility of artificial intelligence and machine learning algorithm for assessing osteoporosis using Hounsfield units (HU) of preoperative lumbar CT coupling with data of QCT. Methods : We reviewed 70 patients undergoing both QCT and conventional lumbar CT for spine surgery. The T-scores of 198 lumbar vertebra was assessed in QCT and the HU of vertebral body at the same level were measured in conventional CT by the picture archiving and communication system (PACS) system. A multiple regression algorithm was applied to predict the T-score using three independent variables (age, sex, and HU of vertebral body on conventional CT) coupling with T-score of QCT. Next, a logistic regression algorithm was applied to predict osteoporotic or non-osteoporotic vertebra. The Tensor flow and Python were used as the machine learning tools. The Tensor flow user interface developed in our institute was used for easy code generation. Results : The predictive model with multiple regression algorithm estimated similar T-scores with data of QCT. HU demonstrates the similar results as QCT without the discordance in only one non-osteoporotic vertebra that indicated osteoporosis. From the training set, the predictive model classified the lumbar vertebra into two groups (osteoporotic vs. non-osteoporotic spine) with 88.0% accuracy. In a test set of 40 vertebrae, classification accuracy was 92.5% when the learning rate was 0.0001 (precision, 0.939; recall, 0.969; F1 score, 0.954; area under the curve, 0.900). Conclusion : This study is a simple machine learning model applicable in the spine research field. The machine learning model can predict the T-score and osteoporotic vertebrae solely by measuring the HU of conventional CT, and this would help spine surgeons not to under-estimate the osteoporotic spine preoperatively. If applied to a bigger data set, we believe the predictive accuracy of our model will further increase. We propose that machine learning is an important modality of the medical research field.
최근 COVID-19와 같은 신종 바이러스 감염증이 확산하여 심각한 공중 보건 문제를 제기하고 있다. 특히 이러한 질병은 고령자에게 치명적으로 작용하여, 생명을 위협하고 심각한 사회적, 경제적 손실을 초래하였다. 이에 많은 산업분야에서 사물 인터넷(IoT) 및 인공 지능(AI)을 응용한 원격진료, 헬스케어, 질병예방 등의 애플리케이션이 소개되어 질병 감지, 모니터링 및 검역 성능을 향상하고 있다. 하지만 기존기술은 갑작스러운 전염병의 출현에 신속하고 통합적으로 적용되지 않기 때문에, 사회 속에 감염병이 대규모 감염 및 전국적 확산되는 것을 차단하지 못하였다. 따라서 본 논문에서는 바이러스 질병 정보 수집기를 통해 지역적 한계가 있는 다양한 감염 정보를 수집하고, AI 브로커를 통해 AI 분석 및 심각도 매칭을 수행하여 감염의 확산을 예측하고자 한다. 최종에는 질병관리본부를 통해 고령자에게 위험경보 발령, 확산 차단 문자 발송 및 감염지역 대피정보를 신속하게 제공한다. 현실적인 고령자 지원시스템은 감염자 발생지역 정보와 고령자의 위치정보를 비교하여 증강현실 기반의 스마트폰 애플리케이션으로 직관적인 위험지역(감염지역) 회피기능을 제공하고 감염지역 방문이 확인되면 자동으로 방역관리 서비스를 제공한다. 향후 제안시스템은 위치기반의 사용자 밀집도를 파악함으로써 갑작스런 인파 집중으로 인한 압사 사고를 사전에 예방하는 방법으로도 활용 가능할 것이다.
지능형 전자상거래 검색 엔진에 대한 관심이 커지면서, 검색 상품의 특징을 지능적으로 추출하고 활용하기 위한 연구들이 수행되고 있다. 특히 전자상거래 지능형 검색 엔진에서 상품을 검색 할 때, 제품의 색상은 상품을 묘사하는 중요한 특징 중에 하나이다. 따라서 사용자의 질의에 정확한 응답을 위해서는 사용자가 검색하려는 색상과 그 색상의 동의어 및 유의어에 대한 처리가 필요하다. 기존의 연구들은 색상 특징에 대한 동의어 처리를 주로 사전 방식으로 다뤄왔다. 하지만 이러한 사전방식으로는 사전에 등록되지 않은 색상 용어가 질의에 포함된 경우 처리하지 못하는 한계점을 가지고 있다. 본 연구에서는 기존에 사용하던 방식의 한계점을 극복하기 위하여, 실시간으로 인터넷 검색 엔진을 통해 해당 색상의 RGB 값을 추출한 후 추출된 색상정보를 기반으로 유사한 색상명들을 출력하는 모델을 제안한다. 본 모델은 우선적으로 기본적인 색상 검색을 위해 671개의 색상명과 각 RGB값이 저장된 색상 사전을 구축하였다. 본 연구에서 제시한 모델은 특정 색상을 검색하는 것으로 시작하며, 검색된 색상이 색상 사전 내 존재하는 지 유무를 확인한다. 사전 내에 검색한 색상이 존재한다면, 해당 색상의 RGB 값이 기준 값으로 사용된다. 만일 색상사전 내에 존재하지 않는다면, Google 이미지 검색 결과를 크롤링하여 각 이미지의 특정 영역 내 RGB값들을 군집화하여 구한 평균 RGB값을 검색한 색상의 기준 값으로 한다. 기준 RGB값을 앞서 구축한 색상 사전 내의 모든 색상의 RGB 값들과 비교하여 각 R, G, B 값에 있어서 ${\pm}50$ 내의 색상 목록을 정렬하고, RGB값 간의 유클리디안 거리 유사도를 활용하여 최종적으로 유사한 색 상명들을 출력한다. 제안 방안의 유용성을 평가하기 위해 실험을 진행하였다. 피설문자들이 생각하는 300 개의 색상 이름과 해당 색상 값을 얻어, 본 연구에서 제안한 방안을 포함한 총 네가지 방법을 통해 얻은 RGB 값들과 피설문자가 지정한 RGB값에 대한 비교를 진행했다. 인간의 눈을 반영하는 측정 기준인 CIELAB의 유클리드안거리는 평균 13.85로 색상사전만을 활용한 방안의 30.88, 한글 동의어사전 사이트인 워드넷을 추가로 활용한 방안의 30.38에 비해 비교적 낮은 색상 간의 거리 값을 보였다. 연구에서 제시하는 방안에서 군집화 과정을 제외한 방안의 색 차는 13.88로 군집화 과정이 색 차를 줄여준다는 것을 확인할 수 있었다. 본 연구에서는 기존 동의어 처리 방식인 사전 방식이 지닌 한계에서 벗어나기 위해, 사전 방식에 새로운 색상명에 대한 실시간 동의어 처리 방식을 결합한 RGB값 기반의 새로운 색상 동의어 처리 방안을 제안한다. 본 연구의 결과를 활용하여 전자상거래 검색 시스템의 지능화에 크게 기여할 수 있을 것이다.
전시 공간에서 관객들의 반응에 따른 다중 인터랙션 서비스를 제공하기 위해서는 관람객의 정확한 위치 및 이동 경로를 얻기 위한 위치 추적 기술이 필요하다. 실외 환경에서 위치 추적을 위한 기술로 GPS가 현재 널리 사용되고 있다. GPS는 빠른 속도로 이동하는 이동체의 위치를 실시간으로 파악할 수 있으므로 위치 추적 서비스(Location Tracking Service)를 요구하는 분야에서 중요한 기술로 활용된다. 하지만 위성을 이용한 위치 추적 기법을 사용하기 때문에 위성 신호를 잡을 수 없는 실내에서는 사용할 수 없다는 단점이 있다(Per Enge et al., 1996). 위와 같은 이유로 Wi-Fi 위치 측위 기술을 비롯하여 ZigBee, UWB, RFID 등의 초단거리 통신 기술 등 다양한 형태의 실내 위치 측위 연구가 진행되고 있다(Schiler and Voisad, 2004). 하지만 이러한 기술들은 전시 공간에서 얻고자 하는 위치정보의 밀도가 높아질수록 구현의 난이도가 높아지고 구축 및 관리 비용도 커지며 구축 가능한 환경이 제약된다는 단점이 있다. 이와 같은 문제를 해결하기 위하여 본 논문에서는 실내 환경에서 스마트폰을 이용한 Wi-Fi 위치 측위 데이터를 기반으로 하여 3D카메라의 Depth Map 정보와의 매핑을 통해 사용자들을 식별하고 위치를 추적하는 시스템을 제안한다.
본(本) 연구(硏究)는 산지(山地)에서 합리적(合理的)으로 임도망(林道網)을 배치(配置)하는 모델을 개발(開發)할 목적(目的)으로 수행(遂行)되었다. 본(本) 연구(硏究)의 임도망(林道網) 배치(配置)모델은 수치지형해석(數値地形解析)과 노선선정(路線選定)의 두 부분으로 구성되어 있다. 본(本) 모델에서는 수치지형(數値地形) 모델을 통하여 지황(地況) 및 임황(林況)에 대한 정보(情報)를 제공(提供)할 뿐만 아니라 종단구배(縱斷勾配)를 바탕으로 임도개설(林道開設)의 적정성(適正性)을 평가(評價)할 수 있다. 이러한 수치지형해석(數値地形解析)의 결과(結果)를 이용(利用)하여 계획(計劃)된 임도밀도(林道密度)를 만족(滿足)시키는 적정임도망(適正林道網)을 수립하게 된다. 노선선정(路線選定)에서는 임도간격(林道間隔)에 따라 노선(路線)의 선택(選擇) 및 임도배치(林道配置)를 위해 면적분할법(面積分割法)을 적용하였으며, 분할면적(分割面積)의 크기는 임도밀도(林道密度)에 의해 산출(算出)된다. 이 면적분할법(面積分割法)은 임도(林道)가 편재(偏在)되어 배치(配置)되지 않도록 해줄 뿐만 아니라 임도계획(林道計劃) 담당자가 융통성(融通性)있게 임도밀도(林道密度)를 조절(調節)하여 배치계획(配置計劃)을 수립할 수 있다. 즉, 임도망(林道網) 계획(計劃)에 있어서의 필수요소인 임도밀도(林道密度)를 다양하게 적용하여 봄으로써 합리적(合理的)인 임도망(林道網)을 구축할 수 있는 것이다. 또한, 노선선정기준(路線選定基準)은 종단구배(縱斷句配), 투자효과(投資效果), 토공량(土工量) 및 이상의 세가지 기준(基準)의 조합(組合)과 같은 4가지 기준(基準)을 적용(適用)하였다. 임도망(林道網) 배치(配置)모델의 현지(現地) 적용가능성(適用可能性)을 평가(評價)하기 위해 평균집재거리(平均集材距離), 집재가능성(集材可能性), 개발지수(開發指數), 순환로망지수(循環路網指數) 등과 같은 지표(指標)를 사용(使用)하였으며, 임도망(林道網) 계획시(計劃時) 노선(路線)을 선정(選定)함에 있어 수치지형분석(數値地形分析)과 면적분할법(面積分割法)을 이용(利用)하는 것이 효과적(效果的)인 것으로 판단(判斷)된다.
최근 페이스북, 트위터 등 다양한 소셜 네트워크 서비스(SNS)가 등장하였으며, 많은 사용자들이 SNS를 이용하고 있다. 이러한 사용자의 증가로 인해 많은 조직들은 SNS에 관심을 가지게 되었다. 조직에서 SNS의 사용은 다양한 이점을 지니고 있다. SNS를 통해 조직들은 사용자들의 행위에 신속하고 지속적으로 반응할 수 있고, 다양한 특성을 지닌 사용자에게 쉽게 접근할 수 있으며, 타 매체에 비하여 사용자 특성이 반영된 차별화된 전략을 세울 수 있다. 또한 기업들은 SNS를 통해 상대적으로 저렴한 비용으로 활용이 가능하며, 사용자들과 양방향 소통이 가능하여 친근성과 신뢰성이 있는 관계 구축이 용이하다. 그러나 네트워크의 특성에 따라 SNS의 정보전달의 효과가 다르게 나타남에도 불구하고 조직들은 네트워크의 특성을 고려하지 않고 획일화된 방법으로 SNS를 활용하여 사용자들과 커뮤니케이션하고 있다. 따라서 본 연구에서는 네트워크에 따른 SNS의 정보전달의 효과 차이를 분석하였다. 즉 오프라인에서의 커뮤니케이션 기반으로 형성된 네트워크와 무작위로 형성된 네트워크를 생성하여, 각각의 네트워크들의 특징 차이를 분석하기 위하여 소셜 네트워크 분석을 하였다. 또한, 각각의 네트워크에서 SNS를 이용한 정보 전달 효과의 차이가 있는지 실증적으로 검증하였다. 실증 분석후 네트워크의 특성에 따라 네트워크 내 사용자들은 SNS를 받아들이는 반응이 달랐다. 따라서 조직이 효과적인 마케팅 수단으로 소셜 네트워크를 활용하기 위해서는 그 목적에 따라 네트워크의 특성을 고려하여 적절한 네트워크 형태를 구성해야 함을 도출하였다.
기후변화 대응, 탄소중립 전략, 도시열섬, 미세먼지, 생물다양성 증진 등 환경이슈에 대한 해결책으로 도시녹지와 수목의 가치가 중요해지고 있으며 다양한 연구들이 도시환경개선을 위한 수목의 효과를 다루고 있다. 따라서 본 연구는 도시환경개선 측면에서 식재수종, 식재구조, 식재밀도, 식재기반의 선행연구를 종합적으로 고찰하여 도시공원 조성녹지의 식재 리뉴얼 방향성을 제안하고 이를 리뉴얼 계획에 적용해 조경수목을 통한 도시환경개선 효과를 제고하는 데 목적이 있다. 서울시 내 대규모 근린공원인 서울어린이대공원의 식재현황을 현장조사하고 조사자료를 근거로 식재기능평가를 했으며 식재기능개선 필요지역을 중첩 도출하였다. 식재기능평가는 공원기능 설정, 공간기능에 따른 식재개념, 식재현황 단계별로 수행하였고, 연구의 결과인 기능변화에 따른 식재 리뉴얼 방향은 식재기능평가 단계별로 도출하였다. 공원기능 설정은 녹지율을 높이는 것이 우선이나 이용자 편의도 고려해야 하며, 식재개념으로 시각적 경관식재는 교목층은 수형이 아름답고 탄소흡수와 미세먼지 저감효과가 높은 수종을 식재, 생태적 경관식재는 경사구배 위 다층구조 식재지 조성, 완충식재는 다층구조숲으로 조성하여 탄소흡수와 미세먼지 저감 효과 향상, 녹음식재는 활엽수 교목층과 초본층으로 구성하고 초본류의 자연형 식재를 지향해야 한다. 식재수종은 도시환경개선 효과가 높은 수종, 지역 자생종, 야생조류 선호 수종을 식재하고, 식재구조는 경관식재지와 녹음식재지는 교목층과 관목층, 교목층과 초본층으로 구성하고 생태성이 강조되거나 완충기능이 필요한 식재지는 다층구조로 조성한다. 식재밀도는 식재간격 기준으로 더 높은 기준을 적용하며, 식재기반은 빗물재활용과 토양객토 및 통기시설을 사용한다. 본 연구의 결과는 향후 노후 도시공원의 식재리뉴얼 계획 시 식재기능평가를 수행하여 식재기능개선 필요지역을 도출하는 데 적용할 수 있으며, 조성녹지의 기능변화 패러다임을 다각도로 반영한 식재 리뉴얼 방향성을 제시했다는 점에서 의의가 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.