References
- Bastanlar Y, Ozuysal M : Introduction to machine learning. Methods Mol Biol 1107 : 105-128, 2014 https://doi.org/10.1007/978-1-62703-748-8_7
- Cheng Q, Zhu YX, Zhang MX, Li LH, Du PY, Zhu MH : Age and sex effects on the association between body composition and bone mineral density in healthy Chinese men and women. Menopause 19 : 448-455, 2012 https://doi.org/10.1097/gme.0b013e31823a40ba
- Choi MK, Kim SM, Lim JK : Diagnostic efficacy of Hounsfield units in spine CT for the assessment of real bone mineral density of degenerative spine: correlation study between T-scores determined by DEXA scan and Hounsfield units from CT. Acta Neurochir (Wien) 158 : 1421-1427, 2016 https://doi.org/10.1007/s00701-016-2821-5
- Coe JD, Warden KE, Herzig MA, McAfee PC : Influence of bone mineral density on the fixation of thoracolumbar implants. A comparative study of transpedicular screws, laminar hooks, and spinous process wires. Spine (Phila Pa 1976) 15 : 902-907, 1990 https://doi.org/10.1097/00007632-199009000-00012
- Deo RC : Machine learning in medicine. Circulation 132 : 1920-1930, 2015 https://doi.org/10.1161/CIRCULATIONAHA.115.001593
- Ebbesen EN, Thomsen JS, Beck-Nielsen H, Nepper-Rasmussen HJ, Mosekilde L : Lumbar vertebral body compressive strength evaluated by dual-energy X-ray absorptiometry, quantitative computed tomography, and ashing. Bone 25 : 713-724, 1999 https://doi.org/10.1016/S8756-3282(99)00216-1
- Erickson BJ, Korfiatis P, Akkus Z, Kline TL : Machine learning for medical imaging. Radiographics 37 : 505-515, 2017 https://doi.org/10.1148/rg.2017160130
- Forsting M : Machine learning will change medicine. J Nucl Med 58 : 357-358, 2017 https://doi.org/10.2967/jnumed.117.190397
- Halvorson TL, Kelley LA, Thomas KA, Whitecloud TS 3rd, Cook SD : Effects of bone mineral density on pedicle screw fixation. Spine (Phila Pa 1976) 19 : 2415-2420, 1994 https://doi.org/10.1097/00007632-199411000-00008
- Hu SS : Internal fixation in the osteoporotic spine. Spine (Phila Pa 1976) 22(24 Suppl) : 43S-48S, 1997 https://doi.org/10.1097/00007632-199712151-00008
- Jergas M, Breitenseher M, Gluer CC, Black D, Lang P, Grampp S, et al. : Which vertebrae should be assessed using lateral dual-energy X-ray absorptiometry of the lumbar spine. Osteoporos Int 5 : 196-204, 1995 https://doi.org/10.1007/BF02106100
- Kotoku J : An introduction to machine learning. Igaku Butsuri 36 : 18-22, 2016
- Lee S, Chung CK, Oh SH, Park SB : Correlation between bone mineral density measured by dual-energy X-ray absorptiometry and Hounsfield units measured by diagnostic CT in lumbar spine. J Korean Neurosurg Soc 54 : 384-389, 2013 https://doi.org/10.3340/jkns.2013.54.5.384
- Lochmuller EM, Burklein D, Kuhn V, Glaser C, Muller R, Gluer CC, et al. : Mechanical strength of the thoracolumbar spine in the elderly: prediction from in situ dual-energy X-ray absorptiometry, quantitative computed tomography (QCT), upper and lower limb peripheral QCT, and quantitative ultrasound. Bone 31 : 77-84, 2002 https://doi.org/10.1016/S8756-3282(02)00792-5
- Masud T, Langley S, Wiltshire P, Doyle DV, Spector TD : Effect of spinal osteophytosis on bone mineral density measurements in vertebral osteoporosis. BMJ 307 : 172-173, 1993 https://doi.org/10.1136/bmj.307.6897.172
- Matsukawa K, Abe Y, Yanai Y, Yato Y : Regional Hounsfield unit measurement of screw trajectory for predicting pedicle screw fixation using cortical bone trajectory: a retrospective cohort study. Acta Neurochir (Wien) 160 : 405-411, 2018 https://doi.org/10.1007/s00701-017-3424-5
- Mounach A, Abayi DA, Ghazi M, Ghozlani I, Nouijai A, Achemlal L, et al. : Discordance between hip and spine bone mineral density measurement using DXA: prevalence and risk factors. Semin Arthritis Rheum 38 : 467-471, 2009 https://doi.org/10.1016/j.semarthrit.2008.04.001
- Nguyen ND, Eisman JA, Center JR, Nguyen TV : Risk factors for fracture in nonosteoporotic men and women. J Clin Endocrinol Metab 92 : 955-962, 2007 https://doi.org/10.1210/jc.2006-1476
- Nonaka K, Uchiyama S : Assessment of volumetric bone mineral density and geometry for hip with clinical CT device. Clin Calcium 21 : 1003-1009, 2011
- Reynolds RJ, Day SM : The growing role of machine learning and artificial intelligence in developmental medicine. Dev Med Child Neurol 60 : 858-859, 2018 https://doi.org/10.1111/dmcn.13917
- Schreiber JJ, Anderson PA, Rosas HG, Buchholz AL, Au AG : Hounsfield units for assessing bone mineral density and strength: a tool for osteoporosis management. J Bone Joint Surg Am 93 : 1057-1063, 2011 https://doi.org/10.2106/JBJS.J.00160
- Somashekhar SP, Sepulveda MJ, Puglielli S, Norden AD, Shortliffe EH, Rohit Kumar C, et al. : Watson for oncology and breast cancer treatment recommendations: agreement with an expert multidisciplinary tumor board. Ann Oncol 29 : 418-423, 2018 https://doi.org/10.1093/annonc/mdx781
- Suzuki K : Pixel-based machine learning in medical imaging. Int J Biomed Imaging 2012 : 792079, 2012 https://doi.org/10.1155/2012/792079
- Suzuki K, Yan P, Wang F, Shen D : Machine learning in medical imaging. Int J Biomed Imaging 2012 : 123727, 2012 https://doi.org/10.1155/2012/123727
- Yamagata M, Kitahara H, Minami S, Takahashi K, Isobe K, Moriya H, et al. : Mechanical stability of the pedicle screw fixation systems for the lumbar spine. Spine (Phila Pa 1976) 17(3 Suppl) : S51-S54, 1992 https://doi.org/10.1097/00007632-199203001-00011
- Younes M, Ben Hammouda S, Jguirim M, Younes K, Zrour S, Bejia I, et al. : Discordance between spine and hip bone mineral density measurement using DXA in osteoporosis diagnosis: prevalence and risk factors. Tunis Med 92 : 1-5, 2014
Cited by
- The future of computer-aided diagnostics in chest computed tomography vol.2019, pp.12, 2019, https://doi.org/10.17116/hirurgia201912191
- Applications of Machine Learning Using Electronic Medical Records in Spine Surgery vol.16, pp.4, 2019, https://doi.org/10.14245/ns.1938386.193
- Internet of Things, Digital Biomarker, and Artificial Intelligence in Spine: Current and Future Perspectives vol.16, pp.4, 2019, https://doi.org/10.14245/ns.1938388.194
- Deep learning augments liver stiffness classification in children vol.51, pp.3, 2021, https://doi.org/10.1007/s00247-020-04916-6
- Machine Learning Solutions for Osteoporosis-A Review vol.36, pp.5, 2021, https://doi.org/10.1002/jbmr.4292
- Artificial Intelligence and Robotics in Spine Surgery vol.11, pp.4, 2021, https://doi.org/10.1177/2192568220915718
- Application of artificial intelligence in diagnosis of osteoporosis using medical images: a systematic review and meta-analysis vol.32, pp.7, 2019, https://doi.org/10.1007/s00198-021-05887-6
- Quantifying Bone Quality Using Computed Tomography Hounsfield Units in the Mid-sagittal View of the Lumbar Spine vol.151, 2019, https://doi.org/10.1016/j.wneu.2021.04.051
- Validation of a gyroscope-based wearable device for real-time position monitoring of patients in a hospital vol.29, pp.4, 2021, https://doi.org/10.3233/thc-202575
- A Robust Segmentation Method Based on Improved U-Net vol.53, pp.4, 2019, https://doi.org/10.1007/s11063-021-10531-9
- Applications of Machine Learning in Bone and Mineral Research vol.36, pp.5, 2019, https://doi.org/10.3803/enm.2021.1111