• Title/Summary/Keyword: Urban simulation

Search Result 1,230, Processing Time 0.029 seconds

Analysis of debris flow simulation parameters with entrainment effect: a case study in the Mt. Umyeon (연행작용을 고려한 우면산 토석류 모의 매개변수 특성분석)

  • Lee, Seungjun;An, Hyunuk;Kim, Minseok;Lim, Hyuntaek
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.9
    • /
    • pp.637-646
    • /
    • 2020
  • The shallow landslide-trigerred debris flow in hillslope catchments is the primary geological phenomenon that drives landscape changes and therefore imposes risks as a natural hazard. In particular, debris flows occurring in urban areas can result to substantial damages to properties and human injuries during the flow and sediment transport process. To alleviate the damages as a result of these debris flow, analytical models for flow and damage prediction are of significant importance. However, the analysis of debris flow model parameters is not yet sufficient, and the analysis of the entrainment, which has a significant influence on the flow process and the damage extent, is still incomplete. In this study, the effects of erosion and erosion process on the flow and the impact area due to the change in the soil parameters are analyzed using Deb2D model, a flow analysis model of debris developed in Korea. The research is conducted for the case of the Mt. Umyeon landslide in 2011. The resulting impacted area, total debris-flow volume, maximum velocity and inundated depth from the Erosion model are compared to the field survey data. Also, the effect of the entrainment changing parameters is analyzed through the erosion shape and depth. The debris flow simulation for the Raemian and Shindong apartment catchment with the consideration of entrainment effect and erosion has been successful. Each parameter sensitivity could be analyzed through sensitivity analysis for the two basins based on the change in parameters, which indicates the necessity of parameter estimation.

Simulating Carbon Storage Dynamics of Trees on the Artificial Ground (시뮬레이션을 통한 인공지반 교목의 탄소저장량 변화)

  • You, Soo-Jin;Song, Ki-Hwan;Park, Samuel;Kim, Se-Young;Chon, Jin-Hyung
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.45 no.2
    • /
    • pp.11-22
    • /
    • 2017
  • To successfully create a low-carbon landscape in order to become a low-carbon city, it is necessary to understand the dynamics of artificial greening's resources on a multi-scale. Additionally, the effects of carbon storage should be quantitatively evaluated. The purpose of this study is to simulate and evaluate the changes in carbon storages of artificial ground trees using system dynamics throughout a long-term period. The process consisted of analyzing the dynamics of the multi-scale carbon cycle by using a casual loop diagram as well as simulating carbon storage changes in the green roof of the Gangnam-gu office building in 2008, 2018, 2028, and 2038. Results of the study are as follows. First, the causal loop diagram representing the relationship between the carbon storage of the artificial ground trees and the urban carbon cycle demonstrates that the carbon storage of the trees possess mutual cross-scale dynamics. Second, the main variables for the simulation model collected 'Biomass,' 'Carbon storage,' 'Dead organic matter,' and 'Carbon absorption,'and validated a high coefficient of determination, the value being ($R^2$=0.725, p<0.05). Third, as a result of the simulation model, we found that the variation in ranking of tree species was changing over time. This study also suggested the specific species of tree-such as Acer palmatum var. amoenum, Pinus densiflora, and Betula platyphylla-are used to improve the carbon storage in the green roof of the Gangnam-gu office building. This study can help contribute to developing quantitative and scientific criteria when designing, managing, and developing programs on low-carbon landscapes.

Analysis of Impacts of Land Cover Change on Runoff Using HSPF Model (HSPF 모형을 이용한 토지피복변화에 따른 유출 변화 분석)

  • Park, Min-Ji;Kwon, Hyung-Joong;Kim, Seong-Joon
    • Journal of Korea Water Resources Association
    • /
    • v.38 no.6 s.155
    • /
    • pp.495-504
    • /
    • 2005
  • The objective of this study is to estimate the impacts of land cover change on the runoff behavior using Hydrologic Simulation Program-Fortran (HSPF) model and Landsat images. Land cover maps were prepared using three every ten years from 1980 to 2000 of the upper watershed ($258\;km^2$) of Gyeongan stream. Hydrologic parameters of HSPF were calibrated using observed data (1999 - 2000) and validated using observed data (2001, 2003) at Gyeongan gauge station. The simulation results showed that runoff volume and peak rate increased as $15.0\;km^2$ forest areas decreased and $19.3\;km^2$ urban areas increased for 20 years land use changes. The runoff volume showed a higher rate of increase in wet year (2003, 1709.4 mm) than in dry year (2001, 871.2 mm). The peak runoff increased $13.3\;\%$ in normal year (2000, 1257.3 mm) because the year has the highest rain intensity (241.3 mm/hr) among the test years. The runoff volume of a dry season and a wet season (May - September) in normal year 2000 increased $4.4\;\%$ and decreased $8.1\;\%$, respectively.

The Analysis of Change Detection in Building Area Using CycleGAN-based Image Simulation (CycleGAN 기반 영상 모의를 적용한 건물지역 변화탐지 분석)

  • Jo, Su Min;Won, Taeyeon;Eo, Yang Dam;Lee, Seoungwoo
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.40 no.4
    • /
    • pp.359-364
    • /
    • 2022
  • The change detection in remote sensing results in errors due to the camera's optical factors, seasonal factors, and land cover characteristics. The inclination of the building in the image was simulated according to the camera angle using the Cycle Generative Adversarial Network method, and the simulated image was used to contribute to the improvement of change detection accuracy. Based on CycleGAN, the inclination of the building was similarly simulated to the building in the other image based on the image of one of the two periods, and the error of the original image and the inclination of the building was compared and analyzed. The experimental data were taken at different times at different angles, and Kompsat-3A high-resolution satellite images including urban areas with dense buildings were used. As a result of the experiment, the number of incorrect detection pixels per building in the two images for the building area in the image was shown to be reduced by approximately 7 times from 12,632 in the original image and 1,730 in the CycleGAN-based simulation image. Therefore, it was confirmed that the proposed method can reduce detection errors due to the inclination of the building.

Analysis of Thermal Environment Impact by Layout Type of Apartment Complexes for Carbon Neutrality Net-Zero: Based on CFD Simulation (공동주택단지 배치유형별 열환경 영향성 분석: 유체역학 시뮬레이션을 기반으로)

  • Gunwon Lee;Youngtae Cho
    • Land and Housing Review
    • /
    • v.14 no.3
    • /
    • pp.93-106
    • /
    • 2023
  • This study attempted to simulate changes in the thermal environment according to the type of apartment complex in Korea using CFD techniques and evaluate the thermal environment by type of apartment. First, apartment complex types in the 2000s and 2010s were referred from previous studies and four types of apartment complex were extracted from. Second, the layout of the apartment complex and temperature changes were analyzed by the direction of wind inflow. Third, a standardized model was created from each type using tower type, plate type, and mixed driving. Last, CFD simulations were performed by setting up the inflow of wind from a total of eight directions. The temperature was relatively low in the type consisting of only the tower type and the type of placing the tower type in the center of the complex, regardless of the direction of the wind. It was due to the good inflow of wind from these types to the inside of the complex. It can be interpreted because wind flows easily into the complex in these types. The findings showed that wind flow and resulting temperature distribution patterns differed depending on the building type and complex layout type, confirming the need for careful consideration of the complex layout in the early design stage. The results are expected to be used as basic data for creating a sustainable residential environment in the early design stage of apartment complexes in the future.

Analysis of ensemble streamflow prediction effect on deriving dam releases for water supply (용수공급을 위한 댐 방류량 결정에서의 앙상블 유량 예측 효과 분석)

  • Kim, Yeonju;Kim, Gi Joo;Kim, Young-Oh
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.12
    • /
    • pp.969-980
    • /
    • 2023
  • Since the 2000s, ensemble streamflow prediction (ESP) has been actively utilized in South Korea, primarily for hydrological forecasting purposes. Despite its notable success in hydrological forecasting, the original objective of enhancing water resources system management has been relatively overlooked. Consequently, this study aims to demonstrate the utility of ESP in water resources management by creating a simple hypothetical exercise for dam operators and applying it to actual multi-purpose dams in South Korea. The hypothetical exercise showed that even when the means of ESP are identical, different costs can result from varying standard deviations. Subsequently, using sampling stochastic dynamic programming (SSDP) and considering the capacity-inflow ratio (CIR), optimal release patterns were derived for Soyang Dam (CIR = 1.345) and Chungju Dam (CIR = 0.563) based on types W and P. For this analysis, Type W was defined with standard deviation equal to the mean inflow, and Type P with standard deviation ten times of the mean inflow. Simulated operations were conducted from 2020 to 2022 using the derived optimal releases. The results indicate that in the case of Dam Chungju, more aggressive optimal release patterns were derived under types with smaller standard deviations, and the simulated operations demonstrated satisfactory outcomes. Similarly, Soyang Dam exhibited similar results in terms of optimal release, but there was no significant difference in the simulation between types W and P due to its large CIR. Ultimately, this study highlights that even with the same mean values, the standard deviation of ESP impacts optimal release patterns and outcomes in simulation. Additionally, it underscores that systems with smaller CIRs are more sensitive to such uncertainties. Based on these findings, there is potential for improvements in South Korea's current operational practices, which rely solely on single representative values for water resources management.

A Integrated Model of Land/Transportation System

  • 이상용
    • Proceedings of the KOR-KST Conference
    • /
    • 1995.12a
    • /
    • pp.45-73
    • /
    • 1995
  • The current paper presents a system dynamics model which can generate the land use anq transportation system performance simultaneously is proposed. The model system consists of 7 submodels (population, migration of population, household, job growth-employment-land availability, housing development, travel demand, and traffic congestion level), and each of them is designed based on the causality functions and feedback loop structure between a large number of physical, socio-economic, and policy variables. The important advantages of the system dynamics model are as follows. First, the model can address the complex interactions between land use and transportation system performance dynamically. Therefore, it can be an effective tool for evaluating the time-by-time effect of a policy over time horizons. Secondly, the system dynamics model is not relied on the assumption of equilibrium state of urban systems as in conventional models since it determines the state of model components directly through dynamic system simulation. Thirdly, the system dynamics model is very flexible in reflecting new features, such as a policy, a new phenomenon which has not existed in the past, a special event, or a useful concept from other methodology, since it consists of a lots of separated equations. In Chapter I, II, and III, overall approach and structure of the model system are discussed with causal-loop diagrams and major equations. In Chapter V _, the performance of the developed model is applied to the analysis of the impact of highway capacity expansion on land use for the area of Montgomery County, MD. The year-by-year impacts of highway capacity expansion on congestion level and land use are analyzed with some possible scenarios for the highway capacity expansion. This is a first comprehensive attempt to use dynamic system simulation modeling in simultaneous treatment of land use and transportation system interactions. The model structure is not very elaborate mainly due to the problem of the availability of behavioral data, but the model performance results indicate that the proposed approach can be a promising one in dealing comprehensively with complicated urban land use/transportation system.

  • PDF

Analysis of Land Use Characteristics Using GIS DB - A Case Study of Busan Metropolitan City in Korea - (GIS DB를 이용한 토지이용 특성 분석 - 부산광역시 건물 높이 시뮬레이션을 중심으로 -)

  • Min-Kyoung CHUN;Tae-Kyung BAEK
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.26 no.3
    • /
    • pp.52-64
    • /
    • 2023
  • As cities continue to develop rapidly, overcrowding, pollution, and urban sanitation problems arise, and the need to separate conflicting uses is emerging. From this perspective, there is no disagreement that urban land use should be planned. Therefore, all activities in land space must be predicted in advance and planned so that land use can be rationally established. This study used the constructed data to compare and analyze the use distribution characteristics of residential, commercial, and industrial areas in Busan Metropolitan City to identify the building area status, total floor area, and floor area ratio by use zone in districts and counties in Busan Metropolitan City. As a result, it was found that the residential area accounted for the largest proportion of the area by use zone at 51%, and that the residential area accounted for the largest proportion at 63% of the total floor area by use zone. And the analysis was conducted using a specialization coefficient that can identify regional characteristics based on land use composition ratio. Because it is difficult to determine the trend of the entire region just by counting the absolute value of the area, the area composition ratio was calculated and compared. Looking at the residential facilities among the specialization coefficients by use area, it is above 1.0 except for Gijang-gun, Sasang-gu, Saha-gu, and Jung-gu. Commercial facilities are over 1.0 except for Gijang-gun, Gangseo-gu, Nam-gu, Sasang-gu, and Saha-gu. Looking at industrial facilities, you can see that the industrial complex distribution area is Gangseo-gu (2.5), Gijang-gun (1.22), Sasang-gu (2.06), and Saha-gu (1.64). In addition, it was found that business facilities and educational welfare facilities were evenly distributed. Land use analysis was conducted through simulation of the current status of building heights according to each elevation in each use area and the height of buildings in each use area. In general, areas over 80m account for more than 43% of Busan City, showing that the distribution of use areas is designated in areas with high altitude due to the influence of topographical conditions.

Evaluation of Road and Traffic Information Use Efficiency on Changes in LDM-based Electronic Horizon through Microscopic Simulation Model (미시적 교통 시뮬레이션을 활용한 LDM 기반 도로·교통정보 활성화 구간 변화에 따른 정보 이용 효율성 평가)

  • Kim, Hoe Kyoung;Chung, Younshik;Park, Jaehyung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.43 no.2
    • /
    • pp.231-238
    • /
    • 2023
  • Since there is a limit to the physically visible horizon that sensors for autonomous driving can perceive, complementary utilization of digital map data such as a Local Dynamic Map (LDM) along the probable route of an Autonomous Vehicle (AV) is proposed for safe and efficient driving. Although the amount of digital map data may be insignificant compared to the amount of information collected from the sensors of an AV, efficient management of map data is inevitable for the efficient information processing of AVs. The objective of this study is to analyze the efficiency of information use and information processing time of AV according to the expansion of the active section of LDM-based static road and traffic information. To carry out this objective, a microscopic simulator model, VISSIM and VISSIM COM, was employed, and an area of about 9 km × 13 km was selected in the Busan Metropolitan Area, which includes heterogeneous traffic flows (i.e., uninterrupted and interrupted flows) as well as various road geometries. In addition, the LDM information used in AVs refers to the real high-definition map (HDM) built on the basis of ISO 22726-1. As a result of the analysis, as the electronic horizon area increases, while short links are intensively recognized on interrupted urban roads and the sum of link lengths increases as well, the number of recognized links is relatively small on uninterrupted traffic road but the sum of link lengths is large due to a small number of long links. Therefore, this study showed that an efficient range of electronic horizon for HDM data collection, processing, and management are set as 600 m on interrupted urban roads considering the 12 links corresponding to three downstream intersections and 700 m on uninterrupted traffic road associated with the 10 km sum of link lengths, respectively.

A Critical Reconsideration on the Function and Meaning of Follies in Gwangju - Focused on the First Gwangju Follies - (광주 폴리의 기능과 의미에 대한 비판적 재고 - 제 1차 광주폴리를 중심으로 -)

  • Han, Sung-Mi
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.43 no.6
    • /
    • pp.41-51
    • /
    • 2015
  • The purpose of the Follies that were constructed for the Gwangju-Biennale were for urban regeneration, to activate the empty old-town areas, and to strengthen the tradition and sense of place of the city. However, the ten Follies constructed around the wall of the old castle reveal many problems including that of leaving Follies alone instead of actively using them, damage to shop-keepers nearby, and pedestrian inconvenience, which is different from the original purposes. This study is meant to help understand the source of the negative phenomena, and to offer plans that will be conductive to the role of urban regeneration through activating the Follies and the spaces around them. As results of the investigation, there was no context giving uniformity among the various Follies. Also, the study showed that the insufficience of designers' understanding of the circumference near the Follies and lack of a consensus between the citizens and designers in the process of making the Follies. The crucial solution for solving these problems, and bringing to life the original purpose of creating the Follies was derived as applying "human activity" to the Follies. This study suggested 'street performance' as an effective device for application to human activity. While a Folly has no fixed function, the development of space program categories based on the applied characteristics of each Folly, and the simulation thereof showed effective potential for attracting people and activating those stagnated spaces. Recently, Gwangju city depicted the second Follies in applications such as reading roon, toilet, and movable food cart, which have clear purpose and different characteristics from the first ones. However, the first Follies will not be moved or demolished. As they are located around the National Asia Culture Center, some of them are supposed to be used to view the center. Consequently, a counterplan for the continuous and efficient use of those Follies is needed. Gwangju has a plan for the installation of 100 Follies throughout the city and it is expected that this study will be a meaningful guide line for improved Follies in the future.