• 제목/요약/키워드: Unstructured meshes

검색결과 151건 처리시간 0.018초

자유표면유동 해석을 위한 비정렬격자계에 적합한 경계면포착법 연구 (A STUDY ON AN INTERFACE CAPTURING METHOD APPLICABLE TO UNSTRUCTURED MESHES FOR THE ANALYSIS OF FREE SURFACE FLOW)

  • 명현국;김종은
    • 한국전산유체공학회지
    • /
    • 제11권4호
    • /
    • pp.14-19
    • /
    • 2006
  • A conservative finite-volume method for computing 3-D flow with an unstructured cell-centered method has been extended to free surface flows or two-fluid systems with topologically complex interfaces. It is accomplished by implementing the high resolution method(CICSAM) by Ubbink(1997) for the accurate capturing of fluid interfaces on unstructured meshes, which is based on the finite-volume technique and is fully conservative. The calculated results with the present method are compared to show the ease and accuracy with available numerical and experimental results reported in the literature.

정렬 및 비정렬 격자를 이용한 선박 저항 계산에서 Courant 수의 공간 분포 및 LTS 기법의 효율성에 관한 연구 (A Study on Spatial Distributions of Courant Number and Numerical Efficiency of LTS Method in Calculation of Ship Resistance Using Structured and Unstructured Meshes)

  • 이상봉;백광준;박동우
    • 대한조선학회논문집
    • /
    • 제54권2호
    • /
    • pp.83-89
    • /
    • 2017
  • Numerical simulations of ship resistance have been performed to compare spatial characteristics of Courant number when using structured and unstructured meshes. When Euler scheme was used for time integration, the structured mesh provided a more efficient calculation because the calculation time interval was larger than that of unstructured mesh. The automatic generation of very small meshes in the unstructured mesh was mainly responsible for the limitation of calculation time interval. When local time stepping Euler scheme was applied, however, the ship resistance of unstructured mesh showed a rapid convergence while a slow convergence of ship resistance in structured mesh was caused by the small time interval in bulbous bow.

비정렬 격자 기반의 물-기체 2상 유동해석기법에서의 압력기울기 재구성 방법 (A NEW PRESSURE GRADIENT RECONSTRUCTION METHOD FOR A SEMI-IMPLICIT TWO-PHASE FLOW SCHEME ON UNSTRUCTURED MESHES)

  • 이희동;정재준;조형규;권오준
    • 한국전산유체공학회지
    • /
    • 제15권2호
    • /
    • pp.86-94
    • /
    • 2010
  • A thermal-hydraulic code, named CUPID, has been developed for the analysis of transient two-phase flows in nuclear reactor components. A two-fluid three-field model was used for steam-water two-phase flows. To obtain numerical solutions, the finite volume method was applied over unstructured cell-centered meshes. In steam-water two-phase flows, a phase change, i.e., evaporation or condensation, results in a great change in the flow field because of substantial density difference between liquid and vapor phases. Thus, two-phase flows are very sensitive to the local pressure distribution that determines the phase change. This in turn puts emphasis on the accurate evaluation of local pressure gradient. This paper presents a new reconstruction method to evaluate the pressure gradient at cell centers on unstructured meshes. The results of the new scheme for a simple test function, a gravity-driven cavity, and a wall boiling two-phase flow are compared with those of the previous schemes in the CUPID code.

비정렬 격자계에서의 물-기체 2상 유동해석코드 수치 기법 개선 (IMPROVEMENT OF A SEMI-IMPLICIT TWO-PHASE FLOW SOLVER ON UNSTRUCTURED MESHES)

  • 이희동;정재준;조형규;권오준
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2010년 춘계학술대회논문집
    • /
    • pp.380-388
    • /
    • 2010
  • A thermal-hydraulic code, named CUPID, has been developed for the analysis of transient two-phase flows in nuclear reactor components. A two-fluid three-field model was used for steam-water two-phase flows. To obtain numerical solutions, the finite volume method was applied over unstructured cell-centered meshes. In steam-water two-phase flows, a phase change, i.e., evaporation of condensation, results in a great change in the flow field because of substantial density difference between liquid and vapor phases. Thus, two-phase flows are very sensitive to the local pressure that determines the phase change. This in turn puts emphasis on the accurate evaluation of local pressure gradient. This paper presents a new numerical scheme to evaluate the pressure gradient at cell centers on unstructured meshes. The results of the new scheme for a simple test function a gravity-driven cavity, and a wall boiling two-phase flow are compared with those of the previous schemes in the cupid code.

  • PDF

2-D Robust Design Optimization on Unstructured Meshes

  • Lee Sang Wook;Kwon Oh Joon
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2003년도 The Fifth Asian Computational Fluid Dynamics Conference
    • /
    • pp.240-242
    • /
    • 2003
  • A method for performing two-dimensional lift-constraint drag minimization in inviscid compressible flows on unstructured meshes is developed. Sensitivities of objective function with respect to the design variables are efficiently obtained by using a continuous adjoint method. In addition, parallel algorithm is used in multi-point design optimization to enhance the computational efficiency. The characteristics of single-point and multi-point optimization are examined, and the comparison of these two method is presented.

  • PDF

비구조형 삼각형 격자에 대한 SMAC기법을 이용한 비압축성 나비어-스톡스 방정식 해법 개발 (Development of an Incompressible Navier-Stokes Solver using SMAC Algorithm on Unstructured Triangular Meshes)

  • 남현식;문영준
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 1997년도 추계 학술대회논문집
    • /
    • pp.55-60
    • /
    • 1997
  • An unstructured finite volume method is presented for seeking steady and unsteady flow solutions of the two-dimensional incompressible viscous flows. In the present method, SMAC-type algorithm is implemented on unstructured triangular meshes, using second order upwind scheme for the convective fluxes. Validation tests are made for various steady and unsteady incompressible flows. Convergence characteristics are examined and accuracy comparisons are made with some benchmark solutions.

  • PDF

임의의 비정렬 격자계에서의 국지적 선형 재구성 기법 (A Locally Linear Reconstruction scheme on arbitrary unstructured meshes)

  • 이경세;백제현
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2003년도 추계 학술대회논문집
    • /
    • pp.31-36
    • /
    • 2003
  • A field reconstruction scheme for a cell centered finite volume method on unstructured meshes is developed. Regardless of mesh quality, this method is exact within a machine accuracy if the solution is linear, which means it has full second order accuracy. It does not have any limitation on cell shape except convexity of the cells and recovers standard discretization stencils at structured orthogonal grids. Accuracy comparisons with other popular reconstruction schemes are performed on a simple example.

  • PDF

비정렬 혼합 격자계에서 격자 변형 기법을 이용한 비정상 점성 유동 수치 모사 (NUMERICAL SIMULATION OF UNSTEADY VISCOUS FLOWS USING A GRID DEFORMATION TECHNIQUE ON HYBRID UNSTRUCTURED MESHES)

  • 이희동;정문승;권오준
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2009년 춘계학술대회논문집
    • /
    • pp.252-268
    • /
    • 2009
  • In the present study, a grid deformation technique has been incorporated into the unsteady compressible and incompressible viscous flow solvers on unstructured hybrid meshes. An algebraic method based on the basis decomposition of normal edge vector was used for the deformation of viscous elements, and a ball-vertex spring analogy was adopted for inviscid elements among several spring analogy methods due to its robustness. The present method was validated by comparing the results obtained from the grid deformation and the rigid motion of entire grids. Fish swimming motion of an NACA0012 airfoil and flapping wing motion of a generic fighter were simulated to demonstrate the robustness of the present grid deformation technique.

  • PDF

비정렬 격자계에서 격자계 구성방법에 따른 계산의 정확도와 효율에 관한 연구 (On the Accuracy and Efficiency of Calculation with Respect to the Grid Construction Methods for Unstructured Meshes)

  • 김사량
    • 한국전산유체공학회지
    • /
    • 제9권1호
    • /
    • pp.48-56
    • /
    • 2004
  • The numerical simulations with unstructured mesh by cell-centered and vertex-centered approaches were peformed for the quadrilateral and triangular meshes. For 2-D inviscid supersonic vortex flow, the simulation results and the analytic solution were compared and the accuracy was assessed. The calculation efficiency was measured by the parameter defined by the consumed CPU time multiplied by absolute error As a results, equilateral triangular mesh yielded the best accuracy and efficiency among the tested meshes. Cell-centered approach gives a little better efficiency than vertex - centered approach.