• Title/Summary/Keyword: Unsaturated soil condition

Search Result 104, Processing Time 0.024 seconds

Estimating Unsaturated Shear Strength and Yield Load of Compacted Aggregate Sub-base Materials (다져진 보조기층 재료의 불포화 전단강도 및 항복하중 평가)

  • Jeon, Hye-Ji;Park, Seong-Wan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.4D
    • /
    • pp.571-576
    • /
    • 2011
  • In general, conventional road pavements are designed under the assumption that the shear strength of geomaterials are under saturated state. In reality, however, most of the pavement geomaterials exists under the unsaturated state. To deal with this gap between saturated and unsaturated conditions, in this paper, unsaturated shear strength was estimated using the results from the triaxial compression test and soil-water characteristics curves. Then, yield loads were assessed using 2-Dimensional finite element method with the selected nonlinear elastic model and the Mohr-Coulomb yield criteria. In addition, various unsaturated condition and surface layer effects on the yield load of granular materials were identified. Therefore, the results demonstrated would provide a possibility to estimate bearing capacity of paved or unpaved roads using unsaturated soil mechanics.

Water Quality Changes in Wastewater Effluent from the Unsaturated and Saturated Soil Aquifer Treatment(SAT) Columns Simulating Shallow Aquifer (얕은 불포화 및 포화 대수층을 모사한 SAT 토양칼럼에서의 하수처리장 방류수 처리 수질 변화)

  • Cha Woo-Suk;Kim Jung-Woo;Choi Hee-Chul;Won Jong-Ho;Kim In-Soo;Cho Jae-Weon
    • Journal of Soil and Groundwater Environment
    • /
    • v.10 no.5
    • /
    • pp.18-24
    • /
    • 2005
  • Water quality changes of wastewater effluent in the shallow aquifier condition was investigated using laboratory unsaturated and saturated SAT columns for over five months. Average DOC removal was 31.9% in the unsaturated SAT column whereas no removal occurred in the saturated SAT column. Under the shallow aquifer condition, nitrification was not completed in the unsaturated SAT column, releasing residual ammonium nitrogen into the saturated SAT column. Short retention time (one day) in the shallow unsaturated SAT column rendered DO of about 2 mg/L to the influent of the saturated SAT column. Phosphate was not removed at all in the unsaturated SAT column while complete removal was achieved in the saturated column. Consequently, organic and inorganic compounds were removed under the shallow aquifer condition as effectively as was in deep aquifer, except for the release of ammonium and relatively high DO into the saturated SAT column.

Analysis of rainfall infiltration characteristics for unsaturated soils using a column test equipment (모형실험장치를 이용한 불포화토의 강우 침투특성 분석)

  • Park, Kyu-Bo;Chae, Byung-Gon;Kim, Kyeong-Su
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.736-742
    • /
    • 2010
  • This study was conducted to characterize on the relationships of rainfall intensity and infiltration rate of rainfall dependent on unit weight change in the gneissic weathered soil by a column test equipment. In this study, volumetric water content and pore water pressure were measured using TDR sensors and tensiometers at regular time intervals. Rainfall conditions including continuous rainfall and repeated rainfall were selected in order to know the effect of antecedent rainfall. In the condition of rainfall intensity 20mm/h and the unit weights of soil as $1.35g/cm^3$, $1.55g/cm^3$ and $1.61g/cm^3$, average rainfall infiltration rate was $2.814{\times}10^{-3}cm/sec$, $1.969{\times}10^{-3}cm/sec$ and $1.252{\times}10^{-3}cm/sec$ respectively. The higher rainfall intensity and lower unit weight of soil, the faster average infiltration rate. Overflow in the column was happened except rainfall condition of rainfall intensity 20mm and soil unit weight $1.35g/cm^3$. Increasing the soil unit weight, overflowed water was increased and occurrence time was faster.

  • PDF

Probabilistic Stability Analysis of Unsaturated Soil Slope under Rainfall Infiltration (강우침투에 대한 불포화 토사사면의 확률론적 안정해석)

  • Cho, Sung-Eun
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.5
    • /
    • pp.37-51
    • /
    • 2018
  • The slope failure due to the rainfall infiltration occurs frequently in Korea, since the depth of the weathered residual soil layer is shallow in mountainous region. Depth of the failure surface is shallow and tends to pass near the interface between impermeable bedrock and soil layer. Soil parameters that have a significant impact on the instability of unsaturated slopes due to rainfall infiltration inevitably include large uncertainties. Therefore, this study proposes a probabilistic analysis procedure by Monte Carlo Simulation which considers the hydraulic characteristics and strength characteristics of soil as random variables in order to predict slope failure due to rainfall infiltration. The Green-Ampt infiltration model was modified to reflect the boundary conditions on the slope surface according to the rainfall intensity and the boundary condition of the shallow impermeable bedrock was introduced to predict the stability of unsaturated soil slope with shallow bedrock under constant rainfall intensity. The results of infiltration analysis were used as inputs of infinite slope analysis to calculate the safety factor. The proposed analysis method can be used to calculate the time-dependent failure probability of soil slope due to rainfall infiltration.

Assessment of the unconfined compression strength of unsaturated lateritic soil using the UPV

  • Wang, Chien-Chih;Lin, Horn-Da;Li, An-Jui;Ting, Kai-En
    • Geomechanics and Engineering
    • /
    • v.23 no.4
    • /
    • pp.339-349
    • /
    • 2020
  • This study investigates the feasibility of using the results of the UPV (ultrasonic pulse velocity) test to assess the UCS (unconfined compressive strength) of unsaturated soil. A series of laboratory tests was conducted on samples of unsaturated lateritic soils of northern Taiwan. Specifically, the unconfined compressive test was combined with the pressure plate test to obtain the unconfined compressive strength and its matric suction (s) of the samples. Soil samples were first compacted at the designated water content and subsequently subjected to the wetting process for saturation and the following drying process to its target suction using the apparatus developed by the authors. The correlations among the UCS, s and UPV were studied. The test results show that both the UCS and UPV significantly increased with the matric suction regardless of the initial compaction condition, but neither the UCS nor UPV obviously varied when the matric suction was less than the air-entry value. In addition, the UCS approximately linearly increased with increasing UPV. According to the investigation of the test results, simplified methods to estimate the UCS using the UPV or matric suction were established. Furthermore, an empirical formula of the matric suction calculated from the UPV was proposed. From the comparison between the predicted values and the test results, the MAPE values of UCS were 4.52-9.98% and were less than 10%, and the MAPE value of matric suction was 17.3% and in the range of 10-20%. Thus, the established formulas have good forecasting accuracy and may be applied to the stability analysis of the unsaturated soil slope. However, further study is warranted for validation.

Properties of the variations of volumetric water content on the saturated/unsaturated media by water-level fluctuations (수위변동에 따른 포화/불포화 매질의 체적함수비 변화 특성 평가)

  • Kim, Man-Il;Lim, Heon-Tae;Kim, Hyoung-Soo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.1076-1082
    • /
    • 2006
  • This study measured the change of media properties using Time domain Reflectometry (TDR) and Tensionmeter (TM) to measure volumetric water content of soil affecting in land subsidence and pollutant diffusion under saturation/unsaturated condition by water-level fluctuations. Also, actual water content compared their changes aspect by dry oven test for quantitative determinations of these measured values. In the case of TM, initial unsaturated condition confirmed that range in dimension of each other different according to their establishment depth, but measured values of TM can know that is shown measured value in almost similar measuring range under drain condition after the first injection. Also, the results of TDR showed that can measure enough change of volumetric water content in saturation/unsaturated condition by water-level fluctuations. Therefore, we are judged that TDR measurement equipment is very effective to measure the variations of volumetric water content and water-level being caused in groundwater level fluctuations.

  • PDF

Derivation of the Effective Hydraulic Conductivity in Stratified Layered Soil Using Stochastic Approach (추계학적 방법을 이용한 성층화된 흙에서 유효 비포화투수계수의 유도)

  • Yun, Seong-Yong
    • Journal of Korea Water Resources Association
    • /
    • v.30 no.6
    • /
    • pp.699-708
    • /
    • 1997
  • The effective unsaturated hydraulic conductivity in stratified soils is evaluated using a three-dimensional stochastic approach. Because of the disparity of the correlation scales in a stratified soil, the general stochastic equations are simplified. This allows analytical evaluation of generic expressions for the effective hydraulic conductivities. Simple asymptotic expressions, valid at particular ranges(wetting front, drying condition, wetting condition) of the mean flow characteristics, are also derived. An example of applying the derived theoretical result to a imaginaryl clay soil is presented. It reveals found that the effective unsaturated hydraulic conductivity showed large-scale hysteresis. Such large-scale hysteresis was produced by the spatial variability of hydraulic soil properties rather than hysteresis of the local parameters. In addition the results show that the effective hydraulic conductivities were larger in the case of accommodating heterogeneity of soil preperties rather than neglecting heterogeneity of soil properties.

  • PDF

The Relationship Between Effective Stress and Shear Strength of Weathered Granite Soils Based on Matric Suctions (모관흡수력에 따른 화강풍화토의 유효응력과 전단강도의 관계)

  • Lee, Younghuy;Oh, Seboong;Kim, Kwanghyun;Seong, Yulho
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.4
    • /
    • pp.45-51
    • /
    • 2012
  • The shear strength of weathered granite soils under unsaturated condition was evaluated by $K_0$ consolidated triaxial tests. Various matric suctions in the unsaturated triaxial tests were applied using suction-controlled triaxial test apparatus for weathered granite soils obtained in Daegu. Soil water characteristic curve (SWCC) laboratory tests for drying and wetting procedure were performed and van Genuchten curves were fitted by experimental results. The contribution of matric suction in unsaturated soils is directly correlated to effective stress and evaluated from SWCCs. The effective stresses were estimated from these SWCCs and the relationship between effective stress and unsaturated shear strength was determined. In the effective stress description, the unsaturated shear strength with respect to various suctions indicates unique relationship and almost the same as that of the saturated envelope.

Unsaturated Hydraulic Conductivity Functions of van Genuchten's and Campbell's models Tested by One-step Outflow Method through Tempe Pressure Cell (empe 압력셀에서 1-단계 유출법을 이용한 van Genchten모형과 Campbell모형의 불포화수리전도도 추정 검증)

  • Han, Kyung-Hwa;Ro, Hee-Myong;Cho, Hyun-Jun;Kim, Lee-Yul;Hwang, Seon-Woong;Cho, Hee-Rae;Song, Kwan-Cheol
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.41 no.4
    • /
    • pp.273-278
    • /
    • 2008
  • This study was carried out in order to test unsaturated hydraulic conductivity estimation of van Genuchten's and Campbell's models using one-step outflow method through Tempe pressure cell. The undisturbed soil cores (columns) were taken from Ap1, B1 and C horizons of Songjeong series (the fine loamy, mesic family of Typic Hapludults). After the saturated hydraulic conductivity Ks of the cores was determined by constant head method, water outflow rate and retentivity of cores were measured in Tempe pressure cell. Fitted curves by models accorded to measured data except for both end of pressure range. In near-saturated condition, measured water retention characteristics showed a relatively better fitness with Campbell's model than van Genuchten's. The soil unsaturated conductivity estimated by Campbell's model was higher than by van Genuchten's. In Ap1 and B1 horizon, the soil unsaturated conductivities obtained by one-step outflow method went between van Genuchten's and Campbell's hydraulic functions, slightly closer to van Genuchten's. In C horizon, van Genuchten's model had better fitness with the one-step outflow data. Consequently, van Genuchten's model generally had better fitness with measured hydraulic conductivity than Campbell's model at the soil water potential range of -10~-75 kPa, especially in C1 horizon. In near-saturated condition, Campbell's model could be thought as relatively accurate hydraulic model, because of the better fitness of Campbell's model with soil water retention data than van Genuchten's model.

A Simple Design Method Considering Unsaturated Soils Characteristics of Slopes Under Rainfalls (강우시 토사사면의 불포화 특성을 고려한 간편 설계법)

  • Han, Taekon;Kim, Hongtaek;Baek, Seungcheol;Kang, Inkyu
    • Journal of the Korean GEO-environmental Society
    • /
    • v.8 no.5
    • /
    • pp.57-65
    • /
    • 2007
  • Slope collapse occurs mostly at the rainy season or thawing season in Korea. From a engineer point of view, the design criterion in recent of soil slopes during the rainfall have a conservative tendency because a slope stability is evaluated in the condition that ground water level is located in the surface. However, for the rational design of soil slopes during rainfall, the raining conditions and the unsaturated soil characteristics of soil slopes have to be considered. For the unsaturated soil characteristics of soil slopes, the laboratory tests for unsaturated soils and the seepage analyses for the raining conditions have to be performed. Due to these difficulties, a conservative design of soil slopes in the current design criterion has been carried out. In this paper, therefore, a simple design method is proposed. The method is considered to the unsaturated soil characteristics and the results of seepage analysis without numerical analysis. To verify the suggested design method, it is compared with both analysis results by current design criterion and analysis results based on the seepage analysis. Through the comparative study, it was found that the current design criterion has been excessively conservative. Hence, simple design method in this study was evaluated as the rational design for the soil slopes during rainfall.

  • PDF