Water Quality Changes in Wastewater Effluent from the Unsaturated and Saturated Soil Aquifer Treatment(SAT) Columns Simulating Shallow Aquifer

얕은 불포화 및 포화 대수층을 모사한 SAT 토양칼럼에서의 하수처리장 방류수 처리 수질 변화

  • Cha Woo-Suk (Water Reuse Technology Center (WRTC), Gwangju Institute of Science and Technology (GIST)) ;
  • Kim Jung-Woo (Department of Environmental Science and Engineering, Gwangju Institute of Science and Technology (GIST)) ;
  • Choi Hee-Chul (Water Reuse Technology Center (WRTC), Gwangju Institute of Science and Technology (GIST)) ;
  • Won Jong-Ho (Department of Environmental Science and Engineering, Gwangju Institute of Science and Technology (GIST)) ;
  • Kim In-Soo (Water Reuse Technology Center (WRTC), Gwangju Institute of Science and Technology (GIST)) ;
  • Cho Jae-Weon (Water Reuse Technology Center (WRTC), Gwangju Institute of Science and Technology (GIST))
  • 차우석 (광주과학기술원 물 재이용 기술 센터) ;
  • 김정우 (광주과학기술원 환경공학과) ;
  • 최희철 (광주과학기술원 물 재이용 기술 센터) ;
  • 원종호 (광주과학기술원 환경공학과) ;
  • 김인수 (광주과학기술원 물 재이용 기술 센터) ;
  • 조재원 (광주과학기술원 물 재이용 기술 센터)
  • Published : 2005.10.01

Abstract

Water quality changes of wastewater effluent in the shallow aquifier condition was investigated using laboratory unsaturated and saturated SAT columns for over five months. Average DOC removal was 31.9% in the unsaturated SAT column whereas no removal occurred in the saturated SAT column. Under the shallow aquifer condition, nitrification was not completed in the unsaturated SAT column, releasing residual ammonium nitrogen into the saturated SAT column. Short retention time (one day) in the shallow unsaturated SAT column rendered DO of about 2 mg/L to the influent of the saturated SAT column. Phosphate was not removed at all in the unsaturated SAT column while complete removal was achieved in the saturated column. Consequently, organic and inorganic compounds were removed under the shallow aquifer condition as effectively as was in deep aquifer, except for the release of ammonium and relatively high DO into the saturated SAT column.

본 연구에서는 얕은 불포화 및 포화 대수층을 모사한 실험실 규모의 SAT 토양 칼럼을 약 5개월간 운전하면서 얕은 대수층 조건에서 하수처리장 방류수의 처리수질 변화를 알아보고자 하였다. 유기물 (DOC)의 평균 제거율은 불포화 (unsaturated SAT) 칼럼의 경우 31.9%굶 높게 나타난 반면, 포화(saturated SAT) 칼럼에서는 DOC가 거의 제거되지 않았다. 얕은 대수층 조건을 모사한 불포화 토양 칼럼에서의 질산화는 충분하지 않은 것으로 나타났으며 잔류 암모니아가 포화대수층으로 유입되었다. 또한 얕은 불포화 칼럼에서의 짧은 체류시간(1 day)으로 인해 포화 칼럼 유입수의 DO가 약 2 mg/L를 유지했다. 인 (phosphate)은 불포화 칼럼에서는 제거되지 않고 그대로 유출되는 특성을 보였고, 포화 칼럼에서는 100% 제거되는 특성을 보였다. 결론적으로, 암모니아성 질소가 포화층으로 유입되고, 포화층 유 입수의 DO가 상대적으로 높다는 점을 제외하면 얕은 대수층 조건에서도 유기물 및 질소, 인의 제거가 충분하게 일어남을 알 수 있었다.

Keywords

References

  1. Amy, G., Wilson, G., Conroy, A., Chahbandour, J., Zhai, W., and Siddiqui, M., 1993, Fate of chlorination by-product and nitrogen species during effluent recharge and soil aquifer treatment(SAT), Water Environ. Res., 65(6), 726-734 https://doi.org/10.2175/WER.65.6.4
  2. Atlas, R. M. and Bartha, R., 1998, Microbial ecology, 4th ed., Benjamin/Cummings Science Publishing, Menlo Park, CA, p. 414
  3. Bouwer, H., Lance, J. C., and Riggs, M. S., 1974, High rate land treatment II : water quality and economic aspects of the Flushing Meadows project, J. WPCF, 46(5), 844-859
  4. Drewes, J. E. and Fox, P., 1999a, Behavior and characterization of residual organic compounds in wastewater used for indirect potable reuse, Water Sci. Technol., 40(4-5), 391-398 https://doi.org/10.1016/S0273-1223(99)00522-3
  5. Drewes, J. E. and Fox, P., 1999, Fate of natural organic matter(NOM) during groundwater recharge using reclaimed water, Water Sci. Technol., 40(9), 241-248
  6. Drewes, J. E. and Jekel, M., 1998b, Behavior of DOC and AOX using advanced treated wastewater for groundwater recharge, Water Res., 32(10), 125-3133 https://doi.org/10.1016/S0043-1354(97)00202-9
  7. Fox, P., Narayanaswamy, K., Genz, A. and Drewes, J., 2001, Water quality transformations during soil aquifer treatment at the Mesa Northwest Water Reclamation Plant, USA, Water Sci. Technol, 43(10), 343-350
  8. Fryar, A. E., Macko, S. A., Mullican III, W. F., Romannak, K. D., and Bennet, P. C., 2000, Nitrate reduction during groundwater recharge, Southern High Plain, Texas, J. Contam. Hydrol., 40, 335-363 https://doi.org/10.1016/S0169-7722(99)00059-5
  9. Idelovitch, E. and Michail, M., 1984, Soil-aquifer treatment-a new approach to an old method of wastewater reuse, J. WPCF, 56(8), 936-943
  10. Idelovitch, E., Terkeltoub, R., and Michail, M., 1980, The role of groundwater recharge in wastewater reuse: Israel's Dan region project, J. AWWA, 72, 391-400
  11. Johnson, J., Barker, L., and Fox, P., 1999, Geochemical transformations during artificial groundwater recharge: soil-water interactions of inorganic constituents, Water Res., 33(1), 196-206 https://doi.org/10.1016/S0043-1354(98)00195-X
  12. Quanrud, D. M., Arnold, R. G., Wilson, L. G., Gordon, H. J., Graham, D. W., and Amy, G. L., 1996, Fate of organics during column studies of soil aquifer treatment, J. Environ. Eng., 122(4), 314-321 https://doi.org/10.1061/(ASCE)0733-9372(1996)122:4(314)