• Title/Summary/Keyword: Unmanned

Search Result 3,034, Processing Time 0.026 seconds

Susceptibility of Myzus persicae on Potato field and Riptortus clavatus on Soybean field to Insecticides treated by Multi-copter (농업용 멀티콥터를 활용한 감자의 복숭아혹진딧물과 콩의 톱다리개미허리노린재의 약제방제 효율)

  • Park, Bueyong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.1
    • /
    • pp.231-236
    • /
    • 2021
  • The Aphid, Myzus persicae, and the bean bug, Riptortus clavatus, are major insects in crops. This study examined the insecticide susceptibility and phytotoxicity of insecticides dispersed using an Unmanned Aerial Vehicle (UAV, multi-copter) against the insects. Sulfoxaflor suspension concentrate (SC, 16X) on potato fields and etofenprox, methoxyfenzide suspo-emulsion(SE, 8X) on soybean fields were dispersed after deploying water-sensitive paper within the field to measure the distribution pattern and coverage index of the falling insecticide. Both insecticides showed a controlled mortality of 76.4% against aphids and 97.5% and 94.4% against the 2nd nymphal, and 5th nymphal stage of the bugs, respectively. The droplet distribution was less than 0.5mm, and coverage analysis revealed an inside and outside coverage of 3.1 and 1.6, respectively. The surrounding area was affected by insecticide spraying using a multi-copter. This study is expected to help expand UAV control and use it safely in the future.

A Review of Structural Batteries with Carbon Fibers (탄소섬유를 활용한 구조용 배터리 연구 동향)

  • Kwon, Dong-Jun;Nam, Sang Yong
    • Applied Chemistry for Engineering
    • /
    • v.32 no.4
    • /
    • pp.361-370
    • /
    • 2021
  • Carbon fiber reinforced polymer (CFRP) is one of the composite materials, which has a unique property that is lightweight but strong. The CFRPs are widely used in various industries where their unique characteristics are required. In particular, electric and unmanned aerial vehicles critically need lightweight parts and bodies with sufficient mechanical strengths. Vehicles using the battery as a power source should simultaneously meet two requirements that the battery has to be safely protected. The vehicle should be light of increasing the mileage. The CFRP has considered as the one that satisfies the requirements and is widely used as battery housing and other vehicle parts. On the other hand, in the battery area, carbon fibers are intensively tested as battery components such as electrodes and/or current collectors. Furthermore, using carbon fibers as both structure reinforcements and battery components to build a structural battery is intensively investigated in Sweden and the USA. This mini-review encompasses recent research trends that cover the classification of structural batteries in terms of functionality of carbon fibers and issues and efforts in the battery and discusses the prospect of structural batteries.

A Study on the Accuracy of GNSS Height Measurement Using Public Control Points (공공기준점을 이용한 GNSS 높이측량 정밀도 분석 연구)

  • WON, Doo-Kyeon;CHOI, Yun-Soo;YOON, Ha-Su;LEE, Won-Jong
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.24 no.2
    • /
    • pp.78-90
    • /
    • 2021
  • In order to construct a precision geoid, it has been diversified into land, sea, aviation, and satellite gravity measurement methods, and measurement technology has developed, making it possible to secure high-resolution, high-precision gravity data. The construction of precision geoids can be fast and conveniently decided through GNSS surveys without separate leveling, and since 2014, the National Geographic Information Institute has been developing a hybrid geoid model to improve the accuracy of height surveying based on GNSS. In this study, the results of the GNSS height measurement were compared and analyzed choosing existing public reference points to verify the GNSS height measurement of public surveys. Experiments are conducted with GNSS height measurements and analyzed precision for public reference points on coastal, border, and mountainous terrain presented as low-precision areas or expected-to-be low-precision in research reports. To verify the GNSS height measurement, the GNSS ellipsoid height of the surrounding integrated datum to be used as a base point for the GNSS height measurement at the public datum. Based on the checked integrated datum, the GNSS ellipsoid of the public datum was calculated, and the elevation was calculated using the KNGeoid18 model and compared with the results of the direct level measurement elevation. The analysis showed that the results of GNSS height measurement at public reference points in the coastal, border, and mountainous areas were satisfied with the accuracy of public level measurement in grades 3 and 4. Through this study, GNSS level measurement can be used more efficiently than existing direct level measurements depending on the height accuracy required by users, and KNGeoids 18 can also be used in various fields such as autonomous vehicles and unmanned aerial vehicles.

Study on Estimation of Unmanned Enforcement Equipment Installation Criteria and Proper Installation Number (무인교통단속장비 설치 판단 기준 및 설치대수 산정 연구)

  • So, Hyung-Jun;Kim, Yong-Man;Kim, Nam-Seon;Hwang, Jae-Seong;Lee, Choul-Ki
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.19 no.6
    • /
    • pp.49-60
    • /
    • 2020
  • The number of traffic control equipment installed to prevent traffic accidents increases every year due to continuous installation by the National Police Agency and local governments. However, it is installed based on qualitative judgment rather than engineering analysis results. The purpose of this study was to present additional installations in the future by presenting the installation criteria considering the severity of accidents for each road type and calculating the appropriate number of installations. ARI indicators that can indicate the severity of traffic accidents were developed, and road types were classified through analysis of variance and cluster analysis, and accident information by road type was analyzed to derive ARI of clusters with high traffic accident severity. The ARI values required to determine the installation of equipment for each road type were presented, and 5,244 additional installation points were analyzed.

Significance of Three-Dimensional Digital Documentation and Establishment of Monitoring Basic Data for the Sacred Bell of Great King Seongdeok (성덕대왕신종의 3차원 디지털 기록화 의미와 모니터링 기초자료 구축)

  • Jo, Younghoon;Song, Hyeongrok;Lee, Sungeun
    • Conservation Science in Museum
    • /
    • v.24
    • /
    • pp.55-74
    • /
    • 2020
  • The Sacred Bell of Great King Seongdeok is required digital precision recording of conservation conditions because of corrosion and partial abrasion of its patterns and inscriptions. Therefore, this study performed digital documentation of the bell using four types of scanning and unmanned aerial vehicle (UAV) photogrammetry technologies, and performed the various shape analyses through image processing. The modeling results of terrestrial laser scanning and UAV photogrammetry were merged and utilized as basic material for monitoring earthquake-induced structural deformation because these techniques can construct mutual spatial relationships between the bell and its tower. Additionally, precision scanning at a resolution four to nine times higher than that of the previous study provided highly valuable information, making it possible to visualize the patterns and inscriptions of the bell. Moreover, they are well-suited as basic data for identifying surface conservation conditions. To actively apply three-dimensional scanning results to the conservation of the original bell, the time and position of any changes in shape need to be established by further scans in the short-term. If no change in shape is detected by short-term monitoring, the monitoring should continue in medium- and long-term intervals.

Development of Basic Research for Establishing the Apple IPM System in Korea: Dr. Lee Soon-Won's Research Case (한국형 사과 병해충종합관리(IPM) 체계 수립을 위한 기초연구의 전개: 이순원 박사의 연구 사례)

  • Ahn, Jeong Joon;Oh, Hyeonseok;Choi, Kyung San;Choi, Kyung-Hee;Do, Yun-Su;Lee, Sun-Young;Lee, Dong-Hyuk
    • Korean journal of applied entomology
    • /
    • v.60 no.1
    • /
    • pp.1-13
    • /
    • 2021
  • The concept of integrated pest management (IPM) first developed in the 1950s, and the concept of economic control via pest management was established in the 1960s. Research on IPM began in the United States and Europe, and IPM studies in Korea started with citrus insects and paddy field pests following the distribution of high-yield varieties of rice. Apple IPM in Korea began with research on pest control using chemical pesticides and pesticides resistant to insect pests, studies on the ecology of insect pests and their natural enemies, and the exploitation of sex pheromones on insect pests. Since the 1990s, IPM research and field projects have been carried out simultaneously for farming households. In the 2000s, the development of pest monitoring and forecasting models centered on mating disturbances, database programs for pests, and networks for sharing information. IPM technology has expanded via the development of unmanned forecasting systems and automation technologies in the 2010s.

Characterizing three-dimensional mixing process in river confluence using acoustical backscatter as surrogate of suspended sediment (부유사 지표로 초음파산란도를 활용한 합류부 3차원 수체혼합 특성 도출)

  • Son, Geunsoo;Kim, Dongsu;Kwak, Sunghyun;Kim, Young Do;Lyu, Siwan
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.3
    • /
    • pp.167-179
    • /
    • 2021
  • In order to characterize the mixing process of confluence for understanding the impacts of a river on the other river, it has been crucial to analyze the spatial mixing patterns for main streams depending on various inflow conditions of tributaries. However, most conventional studies have mostly relied upon hydraulic or water quality numerical models for understanding mixing pattern analysis of confluences, due to the difficulties to acquire a wide spatial range of in-situ data for characterizing mixing process. In this study, backscatters (or SNR) measured from ADCPs were particularly used to track sediment mixing assuming that it could be a surrogate to estimate the suspended sediment concentration. Raw backscatter data were corrected by considering the beam spreading and absorption by water. Also, an optical Laser diffraction instrument (LISST) was used to verify the method of acoustic backscatter and to collect the particle size distribution of main stream and tributary. In addition, image-based spatial distributions of sediment mixture in the confluence were monitored in various flow conditions by using an unmanned aerial vehicle (UAV), which were compared with the spatial distribution of acoustic backscatter. As results, we found that when acoustic backscatter by ADCPs were well processed, they could be proper indicators to identify the spatial patterns of the three-dimensional mixing process between two rivers. For this study, flow and sediment mixing characteristics were investigated in the confluence between Nakdong and Nam river.

Derivation of Required Insurance and Comparative Analysis of Drone Insurance System (드론 보험제도 비교분석과 요구보험 도출)

  • Choi, Jinheoun;Nam, Doohee
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.19 no.6
    • /
    • pp.144-151
    • /
    • 2020
  • The number of drones used in various fields expected to 50,000 commercial drones by 2026. is to purchase business liability insurance only for commercial drones, as the scope of use of drones expands, it necessary to improve the drone insurance system, which imposes legal obligations aircraft duties. In particular, due to the diversification of aircraft characteristics of drones, an insurance system according to the degree of risk is required. To this end, a survey on the current status of drone operation in Korea, a review of documents related to drone insurance at home and abroad, collection and analysis of drone-related data, insurance systems for each transportation method, and analysis of data on overseas drone insurance products. o derive an improvement plan for the drone insurance system for drone insurance by aircraft characteristics and operation missions, and establish insurance standards by aircraft characteristics and operation missions, derive implications through required insurance surveys by sector such as users, users, and insurance companies. Detailed insurance standards were established by calculating the degree of risk according to the physical characteristics of the aircraft, and the liability for damage according to the operation mission was specified.

Analysis of UAV-based Multispectral Reflectance Variability for Agriculture Monitoring (농업관측을 위한 다중분광 무인기 반사율 변동성 분석)

  • Ahn, Ho-yong;Na, Sang-il;Park, Chan-won;Hong, Suk-young;So, Kyu-ho;Lee, Kyung-do
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.6_1
    • /
    • pp.1379-1391
    • /
    • 2020
  • UAV in the agricultural application are capable of collecting ultra-high resolution image. It is possible to obtain timeliness images for phenological phases of the crop. However, the UAV uses a variety of sensors and multi-temporal images according to the environment. Therefore, it is essential to use normalized image data for time series image application for crop monitoring. This study analyzed the variability of UAV reflectance and vegetation index according to Aviation Image Making Environment to utilize the UAV multispectral image for agricultural monitoring time series. The variability of the reflectance according to environmental factors such as altitude, direction, time, and cloud was very large, ranging from 8% to 11%, but the vegetation index variability was stable, ranging from 1% to 5%. This phenomenon is believed to have various causes such as the characteristics of the UAV multispectral sensor and the normalization of the post-processing program. In order to utilize the time series of unmanned aerial vehicles, it is recommended to use the same ratio function as the vegetation index, and it is recommended to minimize the variability of time series images by setting the same time, altitude and direction as possible.

Utilization of UAV Photogrammetry for Actual Condition Survey of Government Owned Lands (국·공유지 실태조사를 위한 UAV 사진측량의 활용성 검토)

  • LEE, Si-Wook;LEE, Jin-Duk
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.24 no.1
    • /
    • pp.80-91
    • /
    • 2021
  • The purpose of this study is to present the applicability to the effective survey into the actual condition of lands such as analysis of occupied location of government owned lands based on orthoimages created from aerial photographs taken by UAV. The boundary point coordinates and areas of the parcels were observed respectively by VRS-GNSS surveying and orthoimages for each land use of two categories of land, i.e. building site and farmland. As a result of comparing boundary point coordinates and areas extracted from UAV orthoimages with VRS-GNSS surveying data which were used as reference data, the RMS error of the coordinates for the boundary points was ±0.074m for both X and Y in the building site, and ±0.150m and ±0.127m for the X and Y respectively in the farmland. The positional error of the boundary point was 1.7~ 2 times higher in the farmland than in the building site where the boundary points were relatively clear. The RMS error of ±8.964㎡ of areas in the farmland was 4.7 times higher than that of ±1.898㎡ of areas in the building site. The area errors of all 22 parcels measured from the orthoimage were found to be within the allowed error range, indicating that it is feasible to apply the orthoimage generated by UAV to survey of government owned lands in terms of accuracy.