• Title/Summary/Keyword: Unlike impinging triplet injector

Search Result 6, Processing Time 0.018 seconds

Mass Distribution and Spray Characteristics to Liquid-Gas Line Selection of Unlike Triplet Impinging Injector (비동질 3중 충돌형 인젝터의 기체-액체 라인 선택에 따른 분무특성)

  • Lee, I.C.;Lee, C.J.;Koo, J.Y.
    • Journal of ILASS-Korea
    • /
    • v.11 no.4
    • /
    • pp.205-211
    • /
    • 2006
  • Impinging angle, impinging distance, length eve. diameter and injection pressure of a triplet injector were tested to evaluate the spray characteristics injected by liquid/gas combinations. Two different kinds of unlike triplet sprays were produced by changing the gas and liquid feed lines. One was the G-L-G(Gas-Liquid-Gas) type, and the other was L-G-L(Liquid-Gas-Liquid) type. Spray angles were wider with the G-L-G type than with L-G-L type. Mass distributions in spray were obtained with a, mechanical patternator. Mass distributions were not circular but elliptical distributions. When the range of mechanical patternator to injector decreased, mass distributions were more concentrated in the center region.

  • PDF

The mixing characteristics of Unlike Split Triplet(F-O-O-F) Impinging-Jet Injector Elements (F-O-O-F 인젝터의 혼합 특성)

  • Lim Byoungjik;Jung Kihoon;Yoon Youngbin
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.283-286
    • /
    • 2002
  • The mixing of fuel and oxidizer and each mass distribution of unlike split triplet(F-O-O-F) injector for liquid rocket which are known to affect the combustion efficiency significantly, has been investigated using PLLIF technique. Experiment is conducted to investigate the effect of mixture ratio(MiR), momentum ratio(MoR) and impinging angle on mixing efficiency. The mixing efficiency, which is introduced by Rupe, gives the global chracteristic of spray mixing. Experiment far comparison with triplet injector(F-O-F), which has same momentum ratio and impinging angle with split triplet injector is conducted.

  • PDF

A Study on Spray and Mixing Characteristics of Unlike Impinging Triplet Injector (F-O-F, O-F-O) (충돌형(F-O-F, O-F-O) 실물형 분사기의 분무특성 및 혼합특성에 관한 연구)

  • 김종규;김승한;문일윤;이광진;서성현;한영민
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.195-203
    • /
    • 2003
  • Spray and Mixing characteristics of the unlike impinging triplet injectors (F-O-F, O-F-O) were investigated with the variation of the momentum ratio of oxidizer to fuel. The spray pattern was measured using a backlit stroboscopic photography technique, and mixing efficiency was measured using a mechanical patternator. Kerosene/water were used as a propellant simulant. From the experimental results, it is found that a O-F-O type injector has a good atomization. And as the momentum ratio increases, the mixing efficiency decreases rapidly.

  • PDF

Effects of Ethanol Mixing Ratio on Spray Characteristics of Triplet Impinging Injector (에탄올 혼합비에 따른 3중 충돌형 인젝터의 분무특성)

  • Lee, In-Chul;Kim, Jong-Hyun;Koo, Ja-Ye
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.15 no.4
    • /
    • pp.1-8
    • /
    • 2007
  • Spray characteristics of a unlike triplet injector were investigated experimentally. Spray images and SMD of droplet were measured to evaluate the spray characteristics injected by liquid/gas combinations. G-L-G(Gas-Liquid-Gas), L-G-L(Liquid-Gas-Liquid) type of injector were used by changing the gas and liquid feed lines. The SMD graph shows that the droplet sizes decrease in the out of radial direction at a fixed gas Reynolds number. The SMD value of decreasing tendency shows that the more ethyl alcohol ratio increase, the more SMD value decrease.

  • PDF

An Experimental Study on the Characteristics of Spray Pattern and the Mixing Performance of Unlike-impinging Split Triplet Injector(F-O-O-F) (F-O-O-F 충돌형 injector의 분무특성 및 혼합성능에 관한 실험적 연구)

  • Lee, K.J.;Moon, D.Y.;Kim, Y.
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.3 no.3
    • /
    • pp.1-8
    • /
    • 1999
  • Mixing efficiency of the unlike Impinging split triplet injector(FOOF type) were measured to investigate the effect of the momentum ratio variation. $H_2$O/kerosene were used as a propellant simulant. The maximum mixing efficiency occured at the momentum ratio 1.5 (total mixture ratio 1.89). Calculated mixing efficiency of real propellant LOX/Kerosene showed similar trend but maximum efficiency of characteristic velocity occurs at the momentum ratio 2.0(total mixture ratio 2.17). Although there exist a little discrepancy between calculated mixing efficiency based on simulant cold test and hot fire test results, this calculated mixing efficiency can be used to predict hot fire mixing efficiency.

  • PDF

Design of Unlike Split Triplet Impinging Element for Jet Mixing (혼합성능 개선을 위한 분리 삼중충돌 요소의 설계)

  • 조용호;김경호;윤웅섭
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.05a
    • /
    • pp.225-232
    • /
    • 2003
  • With an aim placed on its exploitation on practical injector design, liquid phase mixing due to unlike split triplet impinging element is experimentally investigated by a series of cold tests. Non-reacting kerosene/water spray simulates the kerosene/LOX propellant combination. Measurements of local mixture ratio distribution were made for different injection configurations and different momentum ratios. Mixing and mixing controlled characteristic velocity efficiencies are measured in terms of oxidizer/fuel jet momentum ratio from 0.5 to 8. Extent of mixing and its influence on hot performance are estimated in terms of mixing efficiency and mixing controlled characteristic velocity. Envelope of design locus for optimum mixing quality and corresponding maximum hot performance are proposed. Effects of momentum ratio, orifice diameter ratio and jet velocity ratios are also presented and discussed.

  • PDF