• Title/Summary/Keyword: Unknown Input

Search Result 401, Processing Time 0.025 seconds

Adaptive Fuzzy Control of Helicopter (헬리콥터의 적응 퍼지제어)

  • 김종화;장용줄;이원창;강근택
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2001.05a
    • /
    • pp.144-147
    • /
    • 2001
  • This paper presents adaptive fuzzy controller which is uncertainty or unknown variation in different parameters with nonlinear system of helicopter. The proposed adaptive fuzzy controller applied TSK(Takagi-Sugeno-Kang) fuzzy system which is not only low number of fuzzy rule, and a linear input-output equation with a constant term, but also can represent a large class of nonlinear system with good accuracy. The adaptive law was designed by using Lyapunov stability theory. The adaptive fuzzy controller is a model reference adaptive controller which can adjust the parameter $\theta$ so that the plant output tracks the reference model output. First of all, system of helicopter was considered as stopping state, and design of controller was simulated from dynamics equation with stopping state. Results show that it is controlled more successfully with a model reference adaptive controller than with a non-adaptive fuzzy controller when there is a modelling error between system and model or a continuous added noise in such unstable system.

  • PDF

HYBRID PID FLC using sliding Mode (슬라이딩 모드를 이용한 HYBRID PID형 퍼지제어기)

  • Moon, Jun-Ho;Cho, Jong-Hoon;Oh, Kwang-Hyun;Kim, Tae-Un;Nam, Moon-Hyen
    • Proceedings of the KIEE Conference
    • /
    • 1995.07b
    • /
    • pp.992-994
    • /
    • 1995
  • FLC has a good performance for complication system or unknown model by using human linguistic method but many part control design are based on expert knowledge or trial-error method and it is difficult to prove stability and robustness of controller. In this paper we improve this problem by setting fuzzy rules by dividing phase plane of error and rate of error change by switching surface. We can guarantee the stability in nonlinear system, and also in fuzzy PID type controller the complexity of controller design is increased by increasing the number of input variables and defining more range of operation if we want performance of more specific rules, thus we need to fine the method to decrease the number of control rules used in FLC design. In this paper the algorithm is validated by simulation using conventional FLC and proposed method.

  • PDF

Adaptive Fuzzy Sliding-Mode Controller for Nonaffine Nonlinear Systems (비어파인 비선형 계통에 대한 적응 퍼지 슬라이딩 모드 제어기)

  • Park, Jang-Hyun;Kim, Seong-Hwan;Lyoo, Young-Jae;Moon, Chae-Joo
    • Proceedings of the KIPE Conference
    • /
    • 2005.07a
    • /
    • pp.697-700
    • /
    • 2005
  • An adaptive fuzzy sliding-mode controller (SMC) for uncertain or ill-defined single-input single-output (SISO) nonaffine nonlinear systems is proposed. By using the universal approximation property of the fuzzy logic system (FLS), it is tuned on-line to cancel the unknown system nonlinearity. We adopt a self-structuring FLS to guarantee global stability of the closed-loop system rather than semi=global boundedness. The control and adaptive laws are derived so that the estimated fuzzy parameters are bounded and the sliding condition is satisfied.

  • PDF

A New Organic Thin-Film Transistor based Current-driving Pixel Circuit for Active-Matrix Organic Light-Emitting Displays (유기박막트랜지스터(OFTF)를 이용한 AMOLED 픽셀 보상회로 연구)

  • Shin, A-Ram;Bae, Young-Seok;Hwang, Sang-Jun;Sung, Man-Young
    • Proceedings of the KIEE Conference
    • /
    • 2006.10a
    • /
    • pp.22-23
    • /
    • 2006
  • A new current-driving pixel circuit for active-matrix organic light-emitting diodes (AMOLEDs), composed of four organic thin-film transistors (OTFTs) and one capacitor, is proposed using a current scaling method. Designing pixel circuits with OTFTs has many problems due to the instability of the OTFT parameters with still unknown characteristics of the material. Despite the problems in using OTFTs to drive the pixel circuit, our work could be set as a goal for future OTFT development. The simulation results show enhanced linearity between input data and OLEO luminescence at low current levels as well as successfully compensating the variation of the OTFTs, such as the threshold voltage and mobility.

  • PDF

Dynamic Analysis of Cantilevered Curved Beam using Model Analysis Method (모우드 해석법을 이용한 캔틸레버 곡선보의 동적해석)

  • Kim, Young-Moon;You, Ki-Pyo
    • Journal of Korean Association for Spatial Structures
    • /
    • v.7 no.1 s.23
    • /
    • pp.55-62
    • /
    • 2007
  • The Paper presents three methods for calculating the natural frequencies of cantilevered curved Beams. A summary is given of the development of two techniques: theoretic value and the result of the experiment. Theoretic value of curved beam vibration analysis are derived from complementary variational principles assuming as unknown stress-displacement result fields. In order to perform free vibration analysis of curved beam, Aluminum-made cantilevered curved beam is used in experiment. Experimental input and output signals are derived from the impact hammer and the one accelemeter are amplificated by an amplifier. The validity of the modal analysis method

  • PDF

Composite Fault Detection and Isolation for Uncertain Systems (불확정 시스템에서의 복합성 이상검출 및 격리)

  • Yu, Ho-Jun;Kim, Dae-U;Gwon, O-Gyu
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.3
    • /
    • pp.257-262
    • /
    • 1999
  • This paper proposes a composite fault detection and isolation method by combining the parameter estimation method[1] with the observer-based method[2] to take advantages of both methods. Some properties of the parameter estimation method and the observer-based method are revieved, and the composite algorithm is presented. To exemplify the performance of the method proposed, some simulations applied to remotely piloted vehicle are performed.

  • PDF

Dynamic state estimation for identifying earthquake support motions in instrumented structures

  • Radhika, B.;Manohar, C.S.
    • Earthquakes and Structures
    • /
    • v.5 no.3
    • /
    • pp.359-378
    • /
    • 2013
  • The problem of identification of multi-component and (or) spatially varying earthquake support motions based on measured responses in instrumented structures is considered. The governing equations of motion are cast in the state space form and a time domain solution to the input identification problem is developed based on the Kalman and particle filtering methods. The method allows for noise in measured responses, imperfections in mathematical model for the structure, and possible nonlinear behavior of the structure. The unknown support motions are treated as hypothetical additional system states and a prior model for these motions are taken to be given in terms of white noise processes. For linear systems, the solution is developed within the Kalman filtering framework while, for nonlinear systems, the Monte Carlo simulation based particle filtering tools are employed. In the latter case, the question of controlling sampling variance based on the idea of Rao-Blackwellization is also explored. Illustrative examples include identification of multi-component and spatially varying support motions in linear/nonlinear structures.

Output Tracking of Uncertain Fractional-order Systems via Robust Iterative Learning Sliding Mode Control

  • Razmjou, Ehsan-Ghotb;Sani, Seyed Kamal-Hosseini;Jalil-Sadati, Seyed
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.4
    • /
    • pp.1705-1714
    • /
    • 2018
  • This paper develops a novel controller called iterative learning sliding mode (ILSM) to control linear and nonlinear fractional-order systems. This control applies a combination structures of continuous and discontinuous controller, conducts the system output to the desired output and achieve better control performance. This controller is designed in the way to be robust against the external disturbance. It also estimates unknown parameters of fractional-order systems. The proposed controller unlike the conventional iterative learning control for fractional systems does not need to apply direct control input to output of the system. It is shown that the controller perform well in partial and complete observable conditions. Simulation results demonstrate very good performance of the iterative learning sliding mode controller for achieving the desired control objective by increasing the number of iterations in the control loop.

Fuzzy Neural Network Based Generalized Predictive Control of Chaotic Nonlinear Systems (혼돈 비선형 시스템의 퍼지 신경 회로망 기반 일반형 예측 제어)

  • Park, Jong-Tae;Park, Yoon-Ho
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.53 no.2
    • /
    • pp.65-75
    • /
    • 2004
  • This paper presents a generalized predictive control method based on a fuzzy neural network(FNN) model, which uses the on-line multi-step prediction, fur the intelligent control of chaotic nonlinear systems whose mathematical models are unknown. In our design method, the parameters of both predictor and controller are tuned by a simple gradient descent scheme, and the weight parameters of FNN are determined adaptively during the operation of the system. In order to design a generalized predictive controller effectively, this paper describes computing procedure for each of the two important parameters. Also, we introduce a projection matrix to determine the control input, which deceases the control performance function very rapidly. Finally, in order to evaluate the performance of our controller, the proposed method is applied to the Doffing and Henon systems, which are two representative continuous-time and discrete-time chaotic nonlinear systems, res reactively.

Discrimination of insulation defects using a neural network (신경회로망을 이용한 절연 결함의 판별)

  • 최재관;김재환;김성홍;윤헌주;박재준
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1997.11a
    • /
    • pp.381-384
    • /
    • 1997
  • This paper describes the method of diagnosing the degradation by void defects of insulator inside in operation. Needle-shape void specimens, made from LDPE, were used to generate an electrical tree under ac voltage. The method uses a neural network system with input signal of AE patterns. AE pattern consists of the pulse count and average amplitude according to the phase angle. After the learning process was over, unknown emission patterns were put into the network. It was shown that the network discriminates the void deflects well. The effectiveness of the neural network system for partial discharge recognition was shown.

  • PDF