Fuzzy Neural Network Based Generalized Predictive Control of Chaotic Nonlinear Systems

혼돈 비선형 시스템의 퍼지 신경 회로망 기반 일반형 예측 제어

  • Published : 2004.02.01

Abstract

This paper presents a generalized predictive control method based on a fuzzy neural network(FNN) model, which uses the on-line multi-step prediction, fur the intelligent control of chaotic nonlinear systems whose mathematical models are unknown. In our design method, the parameters of both predictor and controller are tuned by a simple gradient descent scheme, and the weight parameters of FNN are determined adaptively during the operation of the system. In order to design a generalized predictive controller effectively, this paper describes computing procedure for each of the two important parameters. Also, we introduce a projection matrix to determine the control input, which deceases the control performance function very rapidly. Finally, in order to evaluate the performance of our controller, the proposed method is applied to the Doffing and Henon systems, which are two representative continuous-time and discrete-time chaotic nonlinear systems, res reactively.

Keywords

References

  1. J. J. Dorning and J. H. Kim, 'Bridging the Gap Between the Science of Chaos and Its Technological Application', In Applied Chaos, J. H. Kim and J. Stringer(Eds.), Wiley, New York, pp. 3-30, 1993
  2. R. S. Mackay, 'Some Thoughts on Chaos in Engineering', In Towards the Harnessing of Chaos, M. Yamaguti(Ed.) Elsevier Science, New York, pp. 73-82, 1994
  3. Steven. H and Strogatz, Nonlinear Dynamics and Chaos, Addison-Wesley Publishing, Company, 1994
  4. G. Chen and X. Dong, 'From chaos to order-perspectives and methodologies in controlling chaotic nonlinear dynamical systems', International Journal of Bifurcation and Chaos Vol. 3, No. 6, pp 1363-1409, 1993 https://doi.org/10.1142/S0218127493001112
  5. H. G. Davies and K. Rangavajhula, 'Nonstationary Response of a Foldedband Attractor', Proceedings of International Mechanical Engineering Congress and Exposition, Chicago, IL, pp. 115-117, 1993
  6. E. Ott, C. Greogi, and J. A. Yorke, 'Controlling chaos', Physical Review Letter, Vol. 64, No. 11, pp. 1196-1199, 1990 https://doi.org/10.1103/PhysRevLett.64.1196
  7. G. Chen and X. Dong, 'On feedback control of chaotic nonlinear dynamic systems', Internatiional Journal of Bifurcation and Chaos, Vol. 2, No. 2, pp. 407-411, 1992 https://doi.org/10.1142/S0218127492000392
  8. G. Chen and X. Dong, 'On feedback control of chaotic continuous-time systems', IEEE Transaction on Circuits and Systems, Vol. 40, No. 9, pp. 591-601, 1993 https://doi.org/10.1109/81.244908
  9. T. T. Hartley and F. Mossaybei, 'A Classical Approach to Controlling the Lorenz Equations', International Journal of Bifurcation and Chaos, Vol. 2, No. 4, pp. 881-887, 1992 https://doi.org/10.1142/S0218127492000501
  10. J. M. Joo and J. B. Park, 'Control of the Differedntially Flat Lorenz System', International Journal of Bifurcation and Chaos, Vol. 11, No. 7, pp. 1989-1996, 2001 https://doi.org/10.1142/S0218127401003176
  11. K. S. Park, ;J. B. Park, Y. H. Choi, T. S. Yoon and G. Chen, 'Generalized Predictive Control of Discrete-time Chaotic Systems', International Journal of Bifurcation and Chaos, Vol. 8, No. 7, pp. 1591-1597, 1998 https://doi.org/10.1142/S0218127498001248
  12. H. Qin, H. Zhang and G. Chen, 'Neural network based adaptive control of uncertain chaotic systems', Proceedings of the IEEE Symposium Circuit and Systems, Monterey, pp. Ⅲ 318-Ⅲ 321, June 1998 https://doi.org/10.1109/ISCAS.1998.704014
  13. H. O. Wang, K. Tanaka and T. Ikeda, 'Fuzzy modeling and control of chaotic systems', Proceedings of the IEEE Symposium Circuits and Systems, Atlanta, pp. 209-212, June 1996 https://doi.org/10.1109/ISCAS.1996.541517
  14. K. B. Kim, J. B. Park, Y. H. Choi and G.Chen, 'Control of chaotic dynamical systems using radial basis function network approximators', Information Sciences, Vol. 130, pp. 165-183, 2000 https://doi.org/10.1016/S0020-0255(00)00074-8
  15. T. W. Frison, 'Controlling chaos with a neural network', Proceedings of the International Conference on Neural Networks, Baltimore, MD, pp. 75-80, 1992 https://doi.org/10.1109/IJCNN.1992.226981
  16. J. S. Oh, Y. H. Choi and J. B. Park, 'A Study on Design of Fuzzy Controller for Chaotic Nonlinear Systems', Proceedings of the IEEK Fall Annual Conference, Vol. 20, No. 2, pp. 277-280, 1997
  17. S. Horikawa, T. Furuhashi and Y. Uchikawa, 'On identification of structures in premise of a fuzzy model using a fuzzy neural networks', Proceedings of the 2nd IEEE International Conference on Fyzzy Systems, pp. 661-666, 1993 https://doi.org/10.1109/FUZZY.1993.327410
  18. T. Hasegawa, S. Horikawa ,T. Furuhashi and Y. Uchikawa, 'On design of adaptive fuzzy neural networks and description of its dynamical behavior', Fuzzy Sets and Systems, Vol. 71, No. 1, pp. 3-23, 1995 https://doi.org/10.1016/0165-0114(94)00196-E
  19. D. W. Clarke, C. Mohtadi and P. S. Tuffs, 'Generalized Predictive Control, Part Ⅰ, The Basic Algorithm', Automatica, Vol. 23, No. 2, pp. 137-148, 1987 https://doi.org/10.1016/0005-1098(87)90087-2
  20. D. W. Clarke, C. Mohtadi and P. S. Tuffs, 'Generalized Predictive Control, Part ?, Extensions and Interpretations', Automatica, Vol. 23, No. 2, pp. 149-160, 1987 https://doi.org/10.1016/0005-1098(87)90088-4
  21. J. B. Rosen, 'The Gradient Projection Method for Nonlinear Programming, Part Ⅰ, Linear Constants', SIAM Journal Applied Mathematics, Vol. 8, pp. 181-217, 1960 https://doi.org/10.1137/0108011
  22. C. C. Lee, 'Fuzzy Logic in Control System: Fuzzy Logic in Controller Part Ⅰ', IEEE Transaction on System, Man and Cybernetics, Vol. 20, No. 2, pp. 404-418, 1990 https://doi.org/10.1109/21.52551
  23. C. C. Lee, 'Fuzzy Logic in Control System: Fuzzy Logic in Controller Part Ⅱ', IEEE Transaction on System, Man and Cybemetics, Vol. 20, No. 2, pp. 419-435, 1990 https://doi.org/10.1109/21.52552
  24. K. Homik, M. Stinchcombe and H. White, 'Multilayer Feedforward Networks are Universal Approximators', Neural Networks, Vol. 2, pp. 359-366, 1989 https://doi.org/10.1016/0893-6080(89)90020-8
  25. T. Poggio and F. Girosi, 'Networks for Approximationa and Learning', Proceedings of the IEEE, Vol. 78, No. 9, pp. 1481-1497, 1990 https://doi.org/10.1109/5.58326
  26. S. M. Kim, Y. H. Choi, J. B. Park and Y. H. Joo, 'Direct Adaptive Control of Chaotic Nonlinear Systems Using a Feedforward Neural Network', Proceedings of the KIEE Summer Annual Conference, pp. 401-403, 1988
  27. K. H. Oh, J. M. Joo, K. S. Park, J. B. Park and Y. H. Choi, 'A Study on the Intelligent Control of Chaotic Nonlinear Systems Using Neural Networks', Proceedings of the 14th Korea Akutomatic Control Conference, pp. 453-456, 1996