• Title/Summary/Keyword: Unitary Operator

Search Result 31, Processing Time 0.021 seconds

DECOMPOSITION OF THE KRONECKER SUMS OF MATRICES INTO A DIRECT SUM OF IRREDUCIBLE MATRICES

  • Gu, Caixing;Park, Jaehui;Peak, Chase;Rowley, Jordan
    • Bulletin of the Korean Mathematical Society
    • /
    • v.58 no.3
    • /
    • pp.637-657
    • /
    • 2021
  • In this paper, we decompose (under unitary similarity) the Kronecker sum A ⊞ A (= A ⊗ I + I ⊗ A) into a direct sum of irreducible matrices, when A is a 3×3 matrix. As a consequence we identify 𝒦(A⊞A) as the direct sum of several full matrix algebras as predicted by Artin-Wedderburn theorem, where 𝒦(T) is the unital algebra generated by Tand T*.

BOUNDED AND UNBOUNDED OPERATORS SIMILAR TO THEIR ADJOINTS

  • Dehimi, Souheyb;Mortad, Mohammed Hichem
    • Bulletin of the Korean Mathematical Society
    • /
    • v.54 no.1
    • /
    • pp.215-223
    • /
    • 2017
  • In this paper, we establish results about operators similar to their adjoints. This is carried out in the setting of bounded and also unbounded operators on a Hilbert space. Among the results, we prove that an unbounded closed operator similar to its adjoint, via a cramped unitary operator, is self-adjoint. The proof of this result works also as a new proof of the celebrated result by Berberian on the same problem in the bounded case. Other results on similarity of hyponormal unbounded operators and their self-adjointness are also given, generalizing well known results by Sheth and Williams.

On the weyl spectrum of weight

  • Yang, Youngoh
    • Bulletin of the Korean Mathematical Society
    • /
    • v.35 no.1
    • /
    • pp.91-97
    • /
    • 1998
  • In this paper we study the Weyl spectrum of weight $\alpha, \omega_\alpha(T)$, of an operator T acting on an infinite dimensional Hilbert space. Main results are as follows. Firstly, we show that the Weyll spectrum of weight $\alpha$ of a polynomially $\alpha$-compact operator is finite, and that similarity preserves polynomial $\alpha$-compactness and the $\alpha$-Weyl's theorem both. Secondly, we give a sufficient condition for an operator to be the sum of an unitary and a $\alpha$-compact operators.

  • PDF

UNITARY INTERPOLATION ON AX = Y IN ALG$\mathcal{L}$

  • Kang, Joo-Ho
    • Honam Mathematical Journal
    • /
    • v.31 no.3
    • /
    • pp.421-428
    • /
    • 2009
  • Given operators X and Y acting on a Hilbert space $\mathcal{H}$, an interpolating operator is a bounded operator A such that AX = Y. In this paper, we showed the following : Let $\mathcal{L}$ be a subspace lattice acting on a Hilbert space $\mathcal{H}$ and let $X_i$ and $Y_i$ be operators in B($\mathcal{H}$) for i = 1, 2, ${\cdots}$. Let $P_i$ be the projection onto $\overline{rangeX_i}$ for all i = 1, 2, ${\cdots}$. If $P_kE$ = $EP_k$ for some k in $\mathbb{N}$ and all E in $\mathcal{L}$, then the following are equivalent: (1) $sup\;\{{\frac{{\parallel}E^{\perp}({\sum}^n_{i=1}Y_if_i){\parallel}}{{\parallel}E^{\perp}({\sum}^n_{i=1}Y_if_i){\parallel}}:f{\in}H,n{\in}{\mathbb{N}},E{\in}\mathcal{L}}\}$ < ${\infty}$ range $\overline{rangeY_k}\;=\;\overline{rangeX_k}\;=\;\mathcal{H}$, and < $X_kf,\;X_kg$ >=< $Y_kf,\;Y_kg$ > for some k in $\mathbb{N}$ and for all f and g in $\mathcal{H}$. (2) There exists an operator A in Alg$\mathcal{L}$ such that $AX_i$ = $Y_i$ for i = 1, 2, ${\cdots}$ and AA$^*$ = I = A$^*$A.

NORM CONVERGENCE OF THE LIE-TROTTER-KATO PRODUCT FORMULA AND IMAGINARY-TIME PATH INTEGRAL

  • Ichinose, Takashi
    • Journal of the Korean Mathematical Society
    • /
    • v.38 no.2
    • /
    • pp.337-348
    • /
    • 2001
  • The unitary Lie-Trotter-Kato product formula gives in a simplest way a meaning to the Feynman path integral for the Schroding-er equation. In this note we want to survey some of recent results on the norm convergence of the selfadjoint Lie-Trotter Kato product formula for the Schrodinger operator -1/2Δ + V(x) and for the sum of two selfadjoint operators A and B. As one of the applications, a remark is mentioned about an approximation therewith to the fundamental solution for the imaginary-time Schrodinger equation.

  • PDF

For new Duality Structure and its Application in the NCV-|v1 > Library (NCV-|v1 >라이브러리의 새로운 쌍대 구조와 응용)

  • Park, Dong-Young;Jeong, Yeon-Man
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.11 no.2
    • /
    • pp.165-170
    • /
    • 2016
  • The characteristic and application of a new duality structure in the $NCV-{\mid}v_1$ > library is studied in this paper. All unitary operations on arbitrarily many qudit's n can be expressed as composition of one- and two-qudit $NCV-{\mid}v_1$ > libraries if their state vectors are eigenvectors. This research provides an extended realization from Barenco's many bits n operator(U(2n)) which is applicable to only all positive polarity statevectors to whole polarity ones. At the control gate synthesis of a unitary operator, such an enhanced expansion is possible due to their symmetric duality property in the case of using both $NCV-{\mid}v_1$ > and $NCV^{\dag}-{\mid}v_1$ > libraries which make the AND predominantly dependent cascade synthesis possible.

ON SPECTRA OF 2-ISOMETRIC OPERATORS

  • Yang, Young-Oh;Kim, Cheoul-Jun
    • The Pure and Applied Mathematics
    • /
    • v.16 no.3
    • /
    • pp.277-281
    • /
    • 2009
  • A Hilbert space operator T is a 2-isometry if $T^{{\ast}2}T^2\;-\;2T^{\ast}T+I$ = O. We shall study some properties of 2-isometries, in particular spectra of a non-unitary 2-isometry and give an example. Also we prove with alternate argument that the Weyl's theorem holds for 2-isometries.

  • PDF

A Theoretical Representation of Relaxation Processes in Complex Spin System Using Liouville Space Method

  • Kyunglae Park
    • Bulletin of the Korean Chemical Society
    • /
    • v.14 no.1
    • /
    • pp.21-29
    • /
    • 1993
  • For the study of relaxation processes in complex spin system, a general master equation, which can be used to simulate a vast range of pulse experiments, has been formulated using the Liouville representation of quantum mechanics. The state of a nonequilibrium spin system in magnetic field is described by a density vector in Liouville space and the time evolution of the system is followed by the application of a linear master operator to the density vector in this Liouville space. In this master equation the nuclear spin relaxation due to intramolecular dipolar interaction or randomly fluctuating field interaction is explicitly implemented as a relaxation supermatrix for a strong coupled two-spin (1/2) system. The whole dynamic information inherent in the spin system is thus contained in the density vector and the master operator. The radiofrequency pulses are applied in the same space by corresponding unitary rotational supertransformations of the density vector. If the resulting FID is analytically Fourier transformed, it is possible to represent the final nonstationary spectrum using a frequency dependent spectral vector and intensity determining shape vector. The overall algorithm including relaxation interactions is then translated into an ANSIFORTRAN computer program, which can simulate a variety of two dimensional spectra. Furthermore a new strategy is tested by simulation of multiple quantum signals to differentiate the two relaxation interaction types.

FACTORIZATION OF A HILBERT SPACE ON THE BIDISK

  • Yang, Mee-Hyea;Hong, Bum-Il
    • Honam Mathematical Journal
    • /
    • v.31 no.4
    • /
    • pp.479-487
    • /
    • 2009
  • Let $S(z_1,z_2),\;S_1(z_1,z_2)$ and $S_2(z_1,z_2)$ be power series with operator coefficients such that $S_(z_1,\;z_2)=S_1(z_1,z_2)S_2(z_1,z_2)$. Assume that the multiplications by $S_1(z_1,z_2)$ and $S_2(z_1,z_2)$ are contractive transformations in H($\mathbb{D}^2,\;\mathcal{C}$). Then the factorizations of spaces $\mathcal{D}(\mathbb{D},\;\tilde{S})$ and $\mathcal{D}(\mathbb{D}^2,\mathcal{S})$ are well-behaved.

Function Embedding and Projective Measurement of Quantum Gate by Probability Amplitude Switch (확률진폭 스위치에 의한 양자게이트의 함수 임베딩과 투사측정)

  • Park, Dong-Young
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.12 no.6
    • /
    • pp.1027-1034
    • /
    • 2017
  • In this paper, we propose a new function embedding method that can measure mathematical projections of probability amplitude, probability, average expectation and matrix elements of stationary-state unit matrix at all control operation points of quantum gates. The function embedding method in this paper is to embed orthogonal normalization condition of probability amplitude for each control operating point into a binary scalar operator by using Dirac symbol and Kronecker delta symbol. Such a function embedding method is a very effective means of controlling the arithmetic power function of a unitary gate in a unitary transformation which expresses a quantum gate function as a tensor product of a single quantum. We present the results of evolutionary operation and projective measurement when we apply the proposed function embedding method to the ternary 2-qutrit cNOT gate and compare it with the existing methods.