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For the study of relaxation processes in complex spin system, a general master equation, which can be used to 
simulate a vast range of pulse experiments, has been formulated using the Liouville representation of quantum me­
chanics. The state of a nonequilibri나m spin system in magnetic field is described by a density vector in Liouville 
space and the time evolution of the system is followed by the application of a linear master operator to the density 
vector in this Liouville space. In this master equation the nuclear spin relaxation due to intramolecular dipolar interac­
tion or randomly fluctuating field interaction is explicitly implemented as a relaxation supermatrix for a strong coupled 
two-spin (1/2) system. The whole dynamic information inherent in the spin system is thus contained in the density 
vector and the master operator. The radiofrequency pulses are applied in the same space by corresponding unitary 
rotational supertransformations of the density vector. If the resulting FID is analytically Fourier transformed, it is 
possible to represent the final nonstationaryr spectrum using a frequency dependent spectral vector and intensity 
determining shape vector. The overall algorithm including relaxation interactions is then translated into an ANSI 
FORTRAN computer program, which can simulate a variety of two dimensional spectra. Furthermore a new strategy 
is tested by simulation of multiple quantum signals to differentiate the two relaxation interaction types.

Introduction

The density matrix theory, originally introduced to de­
scribe statistical concepts in quantum mechanics1, is the most 
powerful tool for the theoretical calculation of spectra. A 
complex spin system described by the density matrix 珈 is 
said to be in superposition state of basis vector and (g 
which spans the corresponding Hilbert space2. If the system 
is in equilibrium in the magnetic fi이d, the density matrix 
is diagonal and the diagonal element gives statistical in­
formation about the spin population in the /-th energy 
level.

In the majority of modern pulse experiments in one and 
two dimensional NMR spectroscopy, the spin system exper­
iencing more than one radiofrequency pulse with some time 
intervals will be brought into a nonequilibrium state. In this 
case all the possible offdiagonal elements 하。), the general 
/(-quantum coherences, can be generated, where the order 
of coherence p denotes the difference in total magnetic quan­
tum number of Q and The time dependence of each 
coherences are also interrelated, because the individual ele­
ments can be transferred to each other due to the coherence 
mixing effect of radiofrequency pulses. The explicit treatment 
of time evolution of these elements, whether they are direct 
observable or not, is therefore of central importance in two 
dimensional spectroscopy especially and even in one dimen­
sional multipulse experiments. The density matrix in Hilbert 
space, however, is not the suitable choice for the explicit 
formulation of dynamic processes in general spin system. 
Particularly the derivation of nonexponential behavior of spin 
relaxation can only be handled indirectly over a cumbersome 
multiple commutator of hamiltonian3 and density matrix in 

this space or in some publications only single quantum co­
herences would be selected and treated seperately for a sim­
plified spin system4, while the other elements are completely 
discriminated at the expence of some part of informations.

For a complete and general treatment of this problem the 
Liouville space formalism5 provides the proper solution. This 
method is known to be ideal for the formulation of the time 
dependence of the spectroscopical system, especially the spin 
relaxation phenomena. Instead of arranging the elements ㈤ 

in a square form of matrix in Hilbert space, they can be 
defined as components of a density vecotr p in the corre­
sponding Liouville space. The hamiltonian can then be con­
sistently transformed to the liouvillian superoperator, whose 
eigenvalues represent the direct observable quantities, the 
transition frequencies and intensities. The conceptual and 
formal distinction between the Hilbert and Liouville space 
method are well documented by Banwell6 and Binsch7, who 
themselves utilized the Liouville formalism to develope * di­
rect method' for calculation of steady state NMR spectra8.

Recently Szymanski et al? were capable to seperate the 
time dependent hamiltonian to a liouvillian superoperator 
for * system of interest* and a semiclassical interaction ha­
miltonian between the * system of interest* and its "thermal 
bath', from which a relaxation superoperator in its full di­
mension could be derived in this formalism. In fact, the mat­
rix elements of the relaxation operator describes the nonex­
ponential behavior of corresponding coherences and thus li­
mitation of the Bloch's simple notation of 'longitudinal' and 
'transversal* relaxation parameters can be overcome in this 
representation.

We have made use of this representation to show how 
the total dynamic effect can be compressed in the FID of 
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multipulse experiments without loss of any relaxation infor­
mation of the system. For the numerical calculation of the 
resulting nonstationary spectra we have introduced the con­
cept of * spectral vector' and * shape vector', which are origi­
nally defined and utilized by Binsch8 for single pulse steady 
state spectra. Two different interaction types, the intramole­
cular dipolar and random fluctuating field interactions, which 
are mainly responsible for the spin relaxation in solution 
NMR, are explicitly investigated for strongly coupled two- 
spin (1/2) system. The overall algorithm was then translated 
into an ANSI FORTRAN computer program CANDYS, which 
can be used to simulate the effects of arbitrary pulse sequ­
ences and visualize them in 2D spectra. In addition a stra­
tegy to differentiate the two interaction types is tested by 
a simulation, in which the dissipation pattern of single and 
double quantum signals are explicitly compared.

Spin Dynamics

Basic Notations. The spin system is defined in this 
paper as n identical nuclei with spin quantum number 1/2 
and magnetogyric ratio y. In a static magnetic fi이d Ht, the 
state of the system is normally represented by an ensemble- 
averaged density matrix o in a N=2" dimensional Hilbert 
space. As starting point of this work we follow the general 
convention of representing the equilibrium density matrix 
elements as eigenvalues of total spin operator Fz to 
the corresponding spin product functionsThe high reso­
lution spin hamiltonian in the frame rotating about z axis 
with frequencey v has the form

一£(褊一V)丿洲+£〉二 j사mJ" (1)m m^nr

where v, J and I are the chemical shifts (Hz), the coupling 
constants (Hz) and the spin operator, respectively. Hs is de­
fined in unit of h.

The N2 matrix elements of g can then be declared as 
components of a density vector p in the N，dimensional 
Liouville space5'7. The hamiltonian will then be reformulated 
as liouville superoperator L.

L=HS ® E~E ® Hs* (2)

where E is the corresponding unit matrix and the N次 N， 
matrix elements of L is constructed as

L^=H偈厂柘H% (3)

In this convention the commutator in Hilbert space will be 
a simple scalar product of the two operators in Liouville 
space. The eigenvalues of the hamiltonian Hs are energy 
levels of the system, to which we have no direct access, 
whereas the eigenvalues of the liouvillian L is the differences 
of the energy levels and consequently direct measurable real 
quantities. An observable of A will be calculated as expecta­
tion value from the scalar product of the density vector p 
and vector operator A,

〈4〉="p(f) (4)

where AT and p(£) are defined as the row vector and column 
vector (in the notation by Jeener11 ^superbra* and *super- 
ket'), respectively. The N2 elements of a vector operator 

must be consistently arranged in the was analogous to den­
sity vector. Any unitary operator U in Hilbert space can be 
transfeired to an unitary superoperator U via simple tensor 
product with the complex cojugate U*.

U=U ® U* ⑸

We do not try to compare the relevance of each vector or 
supermatrix elements and regardless of the irrelevance of 
some elements, the equation of motion in its full dimension 
of Liouville space will be adopted in this work.

一“号» = T L p(J)+A{ p(f) — pj (6)

Relaxation Operator. The general form of semiclassi- 
cal model of interaction hamiltonian is given as

HKt) = 2 £(一1)7,,,饵,,如) (7)
>n jj- A

where the bath operator B(Z)describes the time dependence 
of the 'classical' bath and will be replaced by stationary 
random functions. The irreducible spherical tensor operator 
S with rank 入 has 2入+1 components,卩=0, ± 1,…± X, 
whereas the index m labels the interaction tensors. The re­
laxation superoperator, consistantly translated by Szymanski 
et aP from this interaction Hamiltonian, will be adopted in 
the following work as the form

R ——云，旗 2 §up‘{S”.uS加’卩'+ Sir Jnuir —3小)

>11 w M JJ'

(8)

where 3〃 is the mean Larmor frequency of the spins in sys­
tem. The derivation superoperator S can be well derived 
from spherical tensor S in the same manner as in Eq. (3).

&心.ijki—. ik & — 8该 S’屮.ij (9)

The spectral Jensity J

心(®)= 1/2 J exp( 一 i wr)虹 (10)

is the Fourier transform of the classical ensemble-averaged 
correlation function of the bath factions.

= {Bwp(O)B„r / -T)}av (11)

For the numerical calculation a further simplification of Eq. 
(17) must be introduced here. As the best alternative12 for 
the explicit form the correlation function C(r) is divided 
into a time-independent term C(0) and an index-indepen­
dent term g(t)

GeuZ) =Cmw.p(0) gh) = p(0)|()J.g(T) (12)

The limiting conditions from the molecular dynamics

gM 三 1 for I 니《q
= 0 "히》&

allow us to express the function g(t) as an exponential func­
tion.

8(t) 二 exp( — |이/匚) (13)

And thus the exact form of the correlation time r(. can be 
defined
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T( = [ gM dr (14)
J 0

Making use of Eq. (12) and (13) the spectral density will 
be rewritten

= 3〜{•&甲(0)・B*_u(0)}aJ exp{( — |r| T阪匹)/다 dx

(15)

In high resolution NMR spectrum the condition of extreme 
narrpwomg. egVI, is normally satisfied and the integration 
term in Eq. (15) can be replaced with 2xc.

•/허 i ={Bw(0)&f(0)}y (16)

In the following we will describe how the spin operator in 
Eq. (9) and the function for spectral density Eq. (16) can 
be described in relation to a specific interaction type for 
the construction of the complete form of relaxation supero­
perator.

Intramolecular Dipolar Interaction. This type of in­
teraction concerns a mutual influence between the two cou­
pled spins A and B and the spin operators are given9 by

&,,= 矗{4/〃?-(以北+庭纫，

&.1 =干土 海，

&祟=3■貝戏 (17)

and the spherical tensor components of the random bath 
function have the form13

&(£) = 스孕 a{l~3 cos20 (f),
4
a

Bi(f) 드分預 “[sin照) cos0(O exp{ 一抑(£)}1

Q
位(t)=瓦歹"[sin^O) exp( 一 2 i <p(/)| ] (18)

where a— h^/b3 and b is the distance between the two mu­
tually interaction spins. After an average of the function B(t) 
over the random molecular motio쉬

：.o
{B 編디剧}必={度}如=*/ (19)

the spectral density in Eq. (16) lose its index and therefore 
can be redefined as relaxation rate r0

以허广브 쏘&三/ (20)

After substitution of the spectral density in Eq. (8) with Eq. 
(20) one gets the following expression for the relaxation su­
peroperator RP due to the dipolar interaction.

R"= Z Z 2 Z 6岫 {$짜기「+&」卩，(21) 
m mr p p'

Random Fluctuating Field Interaction. If the relax­
ation of the system originates from the randomly fluctuating 
magnetic field H produced at the spin sites by other magne­
tic moments, for example other nuclei or paramagnetic spe­

cies in the sample, the spin operator S for Eq. (9) and bath 
function B(t) for Eq. (16) can be described

&士 1 =干 W歹'士 (22)

&辺=—一出丫(比)““ Bm± = 一§丫(丑土)期(23)

For the evaluatiun of the ensemble averages it is assumed 
that15

{(瓦)2}”=号{(H)h，{(H±Y}av = ~{(H)2]av (24)

And thus the bath function can be written as a function 
of random field components.

꽈,=｛B꺼 ±8冷士｝寸 허，｝如 (25) _ o

In a special case, where the random fields at the spin site 
m and mf are identical,

{/} 砌디 必必}如={乩】砌如 (26)

and because of the cross term between spin m and m'f we 
may introduce a correlation constant £»„< by the relation

라꺼，= I；钦'쩌， J for m-mr
[n ]av OM&mVl for (27)

which describes the complete correlation (j，= D or uncor­
relation (£e，=0) of the fluctuating fields at each nuclear 
sites m and m'.

•/丄, =*气 W}如玲加，三卢&財， (28)

where we have defined the relaxation rate / due to the ran­
dom field interaction. The relaxation superoperator RR is 
thus constructed as

酔= 一?죠 Z Z Z Z + S叫} (29)
m mf ft

The spectral densities in Eq. (20) in Eq. (28) are complexly 
reduced to the relaxation rate r0 and / and can be inter­
preted as purely phenomenological parameter for the related 
interaction types. The resulting matrix elements of R repre­
sent the comple nonexponential behavior of all the individual 
coherences. Although in case of certain special experimental 
situations the 'intrinsic' and 'extrinsic' symmetry proper­
ties can allow us to rationalize some of the N^XN2 matrix 
elements^ we make use of all the matrix elements to handle 
the general pulse sequences.

Radiofrequency Pulse Operator. If a nonselective st­
rong RF pulse with the field strength H】,which lies vertical 
to the static field, acts on the spin system, the RF h은Id cau­
ses change in spin state. In the rotating coordinate system 
this means that the pulse with pulse duration d brings the 
total magnetisation vector a degree (a=rYHi) in dir은ction 
to y?-plane (or xz-plane), if the field lies on the x-axis (or 
j-axis). Since the intensity of the RF field is normally high 
enough, that the time evolution of the system during the 
short pulse can be ignored. In theoretical words, the act 
of RF pulse can be expressed as a rotation operation of the 
density matrix,
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o+(t)=P+(a) b-(f)F- (a) (30)

where a — (/) and (t) represnt the system before and 
after the pulse operation. The rotation operator P(a) in Hil­
bert space can be formulated16 using the corresponding spin 
operator.

P± (ctr) 나](exp(士 i ct/m)} =l[{cos(a/2)± 2, sin(a/2) Ixm\, 
m m

P± (c板)-fllexp(+ z a /ym) t = cos(a/2) ± 2i sin(a/2) Iym]r 
m m

(31) 

from which the corresponding rotation superoperator is con­
structed via Eq. (5)

P(a)=P+(a) ® P-(a) (32)

The operation in Eq. (30) has more compact form in Liouville 
space

p+(t)=P(ci) p—(£) (33)

Master Equation. The equation of motion of the sys­
tem in nonequilibrium state can be thus formulated using 
Eq. (2) and (21) or (29) in Liouville space.

。写? = 一，丄 P(，)+찌P(，)一P。} (34)

Owing to the operation invariance of p0 towards L the Eq. 
(34) can be rewritten to

={TL + A} {p(£)-p。} (35)

For the operator and density vector new notations are intro­
duced here; the master operator

Af(v, J, r) = ~iL(y, (36)

as a function of chemical shifts (v), coupling constants (J) 
and relaxation rate (r), and the deviation density vector for 
the system in nonequilibrium state.

i](t) = p(£) — W (37)

The compact form of differential equation

-쐫〃(38) 

gives the solution

q(f) = exp(M t) n(^) (39)

The symmetric complex matrix operator M can be diagonali­
sed using the complex orthogonal eigenvecotor K1718,

A血. = V~yMV, M= 冗사°】 (40)

in which the inverse 广】and the complex diagonal matrix 
D can be transformed from the transpose of orthogonal but 
not unitary matix ^19.

广】(41)

The tinal master equation of motion is formulated

= exp(A t) r-1 T](&) (42)

and the diagonal exponential operator is

Figure 1. Schematic representation of pulse experiments for 
(a) 1D spectroscopy and (b) 2 D spectroscopy. The density vector 
in the detection period can be successively reduced to the den­
sity vector p(O and t](O immediately after the pulse sequence 
using master and/or pulse operator.

exp (A/) = diag. (exp (Xi /), exp(A,2/), … exp G项아)} (43)

Spectral Synthesis

Calculation Algorithm. A general multipulse experi­
ment can be interpreted in this context as alternating opera­
tions of the RF pulse operator and the time devloping master 
operator. The final signal acquisition process will be perform­
ed by the projection operator, which is mentioned below. 
The general procedure to simulate pulse experiments with 
this algorithm is described in Figure 1.

When the pulse sequence is properly designed for the pur­
pose of the experiment, the density vector p(f°) and n(") 
at the moment (1) just after the pulse sequence can be 
calculated using master operator and corresponding pulse 
operator. The system in detection period, r|(/X can be then 
easily reduced to the density vector This means in 
the case of 1Z> spectroscopy (Figure 1(a)) for each numbered 
state;

(1) ： t血)= P0)P

(2) : T](/)=exp(Af T](/J

The free induction decay (FID) G(t) is then interpreted 
as the interaction between the density vector and the projec­
tion vector operator

G(f)= —z方 T](f) = 血) (44)

where F+ is the vector operator formed consistantly from 
the matrix elements of the operator F+=£/十 and selects 
the single quantum coherences from the density vector 
The frequency spectrum S(c。)，where a)=2nv, is defined as 
the Fourier transform of the time spectrum G(£) and further 
reduced to the fundamental terms, x)(t0), and eigenvalue A 
and eigenvector V of the master operator.

S((o) = I G(f) exp( 一 3") dt 
J o

=I { TF?exp(M£) t血)exp(—MM)} dt 
j o

=—/ /+ J exp(A f) exp( — Z <o /) dt}广1 n (") (45) 



Theoretical Representation of Relaxation Processes Bull. Korean Chem. Soc., Vol. 14, No. 1, 1993 25

The integral term in Eq. (45) has an analytical solution in 
closed form and there is a reason to introduce a new spectral 
vector g(ft)) by the definition;

[exp{ (A —/ — (A—i 3)-1= (46)
J 0

and vector operator A and shape vector B;

AT=-iFlVt 血) (47)

The final ID spectrum S((o) is thus a simple product fre­
quency-determining spectr^ vector Qt intensity-determ ining 
shape vector B and projection vector operator A

S(®)=4『{Q(a))® 아 (48)

where the tensor product 이 gives also a vector
with the elements s 如 The real and imaginary part of the 
shape vector give informations about the .relative intensity 
of the x-component and j-component of the coherence respec­
tively, and the real and imaginary parts of the spectral vector 
about the line broadening and line position, i.e.r resonance 
frequency, respectively. Consequently the resulting complex 
spectrum has also the real and imaginary part, which repre­
sent the absorption mode and dispersion mode spectrum in 
case of a single pulse experiment.

For 2D spectroscopy (Figure 1(b)) the same procedure 
can be summarised as follows.

(1) ： t血)= p(Q-p。

(2) : T](/i)=exp(Af ?i) n(O

p"i) = exp(M4) + P。

(3) : p(h O)=P(a)pG)=P(a){expM"i) n(4) + p。}

q(h 0)=P(a){exp(Mh) + f나 一 »

(4) : t2)=exp(A02)히(h 0)

=exp(M$2)P(a){exp(M+

-exp(Mtz) p0

Making use of Eq. (40) the density vector i](h h) in the 
detection phase becomes

n (fl, tz) = V exp(A f2){p (a) exp(A 6) 8+C} (49)

with the matrix operators and shape vectors B and C

P(a) = r¥(a) V,尸免)=广圮(&) (50)

C=p'(a)p。 (51)

The FID is therefore

GO】，切=一〃耳“]。i，tQ

=4"xp(At2){P(a)exp(A") B+C} (52) 

and the Fourier transformation of the function G(h about 
h and t2 produces the frequency spectrum S(g)i, 4)

1*0。 foO
S((M g)2)=J o exp(-:(O2^2)f2) exp(-z(0i ty)dtidt2

exp{ (A—棚2”2 }站『(。)丄 exp( (A—： B

+ J exp(—: &)i 眞)dti C] (53)

Replacing the integration terms with the new spectral vector 

components defined a옹

[ exp{ (A-： 妇사以2 = - (AT 妇一】즈 0&)
J 0
[exp{ (A-/-(ATcdi)-1= Q(g)i)
J 0
I* exp( h)dh= -(一i(Di)'】三0((m) (54)
J 0

gives the final 2D spectrum

S(a)i,(02) =4，、{Q(®2)®[X(a){ 2(a)i) ®이 +E{0(m) ® 아 가

(55)

The last term E{0((也)®C| with the unit matrix E in Liou- 
ville space contributes only to axial signals in£ axis (g)i=0). 
If one takes an interest only in relevant range (coiT^O,("“)), 
the Eq. (55) can be further abbreviated to

S((m,(D2)=，4，{Q(®2)®[P(a){Q(m)®하]} (56)

As the final consequence of the master operator Eq. (36) 
the complex spectrum S(a)i,(02) has mathematically the real 
and imaginary part as defined

S尸Re{S(a)i,(復)}, S,=I伽{S(a)i, ©2)} (57)

In contrast to 1 D spectrum one cannot speak of an absorp­
tion or dispersion mode over the entire range. A pseudo-ab­
sorption spectrum can be attained by the combination of Sr 
and Si either of the two forms;

&升 (58)

S此w={S¥+身}刑 (59)

The individual signals in these representations give informa­
tion about the relative magnitudes of the related coherences. 
Introduction of a new vector Fi in f\ domain and F2 in f2 
domain

=P(a){0扇)®와, F2(g)2)=0(o)2) (60)

makes possible to describe S(cdi,(02) as

S(扇《)2)=S(Fi, F2)(61) 

and one obtains the individual phase information by selecting 
the real (F) or imaginary part (F) of the component vec­
tors

S尸Sg 形)，&=S(FL 刊)，

Sn=S(F\ F凱 S户S(舟，理)， (62)

Whether or which of them in Eq. (57) and (62) produces 
a pure phase, i.e., pure absorption or dispersion form, or 
a mixed phase20 spectrum depends clearly on the composi­
tion of the pulse sequence and their phase relation to the 
observation pulse.

Computer Program. The developed algorithm is then 
translated into a computer program, which can simulate arbi­
trary pulse experiments and synthesise the resulting nonsta- 
tionary spectra. The first version of this program is written 
in ANSI FORTRAN for a general 2-spin(l/2) system and 
named as CANDYS for Calculation Algorithm for Nonstati- 
onary Dynamic Spectrum. The structure and subroutine hie­
rarchy of the program is shown in Scheme 1, which gives 
a short overview in the grogramming strategy. Three master 
subroutines INITIAL, MAIN and SPECTRA monitor the logi-



26 Bull. Korean Chem. Soc., Vol. 14, No. 1, 1993 Kyunglac Park

CANDYS ——r- INITIAL ―厂 SYSDEF 
-BASIS 
-BLOCOUT 
-DIPOLE -----  TENDIP
L random ----- TEHRAN

-HAIN r~ HAMILT 
-LIOU 
一 FPLUS 
_ RHOEQ 
一 MASTER 
-HDIAG COMHES

COMLR2

FLIPX
FLIPY

一 PULSRUN ―PVLSX 
V- PULSY • L EVOLUT

-VECTOR

」SPECTRA 一i- PLOT ID 
卜 PL0T2D L PLOTPJ

Scheme 1. The subroutine hierarchy in program CANDYS.

cal flow by calling the corresponding subroutines and in the 
following some important remarks are given about the func­
tions of each routine.

The subroutine SYSDEF reads in and prints out the input 
data of the spin system at hand. The input data includes 
the static NMR parameters (chemical shifts and coupling 
constants for the hamiltonian in Eq. (1)), dynamic parameters 
(relaxation rate in Eq. (20) or (28) and correlation constant 
in Eq. (27)) and the spectral parameter, such as spectral 
range and the digital resolution for the calculation of spectra. 
The input number of spins(算)will be used to calculate the 
dimension of the Hilbert(2n) and Liouville(22n) space. The 
routine BASIS generates the spin product basis functions 
as eigenfunction of Iz and arranges them in the order ac­
cording to their totasl Fz components. In the subroutine 
BLOCOUT the numbering of the basis functions and matrix 
elements is created and stored in an index vector, which 
enables the consistent transformation of a vector or matrix 
operator from Hilbert to Liouville space. The subroutine DI­
POLE and RANDOM build up the dipolar relaxation operator 
in Eq. (21) and random field relaxation operator in Eq. (29) 
from the spin operator prepared in the routines TENDIP 
and TENRAN. The subroutine HAMILT sets up 나te hamilto­
nian matrix elements according to Eq. (1) using chemical 
shifts and coupling constants read in SYSDEF, whereas the 
routine LIOU converts the hamiltonian to the liouvillian su­
peroperator in Eq. (3) with the help of the index vector. 
In the routine FPLUS the vector operator F will be genera­
ted from the corresponding raising operator F+ The 
subroutine RHOEQ calculates the diagonal elements of the 
equilibrium density matrix in Hilbert space using the z com­
ponents of the spin operator Fz, while the offdiagonal ele­
ments are set zero and all of the matrix elements are then 
arranged in an one dimensional array, i.e., density vector. 
In the subroutine MASTER the liouvillian as imaginary part 
from LIOU and the relaxation superoperator as real part 
from DIPOLE and/or RANDOM are combined to a total 
master operator in Eq. (36). The subroutine MDIAG controls 
diagonalisation of the complex and symmetric master opera­

tor by calling the subroutines COMHES and COMLR221. The 
routine COMHES reduces the matrix into an upper Hessen- 
berg form by the similarity transformation17 and the routine 
COMLR2 finds the eigenvalue A and eigenvector V in Eq. 
(40) from this matrix by the modified LR mehod18, while 
the routine CDIV and CSROOT perform complex division 
and complex square root. The subroutine MDIAG calculates 
finally the complex diagonal matrix from the eigenvector V 
using Eq. (41). A pulse sequence can be interpreted as alter­
nating pulse operations and time evolutions, which will be 
carried out in the subroutine PULSRUN. It calls 나le routine 
PULSX or PULSY for rotation operation in Eq. (33) about 
x or y axis, while the corresponding pulse operator in Eq. 
(31) and (32) with the specified flip angles are generated 
in the routine FLIPX or FLIPY. The time evolution during 
intervals between the pulses will be calculated by the equa­
tion of motion in Eq. (39) in the subroutine EVOLUT. The 
subroutine VECTOR generates 난}e spectral vectors in Eq. 
(46) and (54), shape vectors in Eq. (47) and (51) and matrix 
operator in Eq. (50). The master subroutine SPECTRA moni­
tors the output mode of the resulting spectra according to 
the representatins in Eq. (57), (58), (59), and (62) as demand­
ed in input data. In case of ID experiments the spectrum 
will be output as [Xfrequency,匕讪顽J coordinates in the sub­
routine PLOTID, while the 2 D spectrum will be defined in 
theree diensional data space and output as。【冲次兄，丫砲旳圧沱， 

ZinMy] coordinates in PLOT2D. In the routine PLOTPJ a 
2 D spectrum can be projected in 丿» and f2 domains and out- 
p기t as ID representation, {Xf^uencyl, Yintensity] and (Xfrem2,

시 ♦
The program is compiled by the Microsoft FORTAN Ver­

sion 5.0 under MS-DOS operating system and runs at IBM 
compatible personal computer. For the program execution 
the properly formulated input file must be combined and 
the result of a calc미ation, spectral data points, may be stored 
as output file in ASCII format. The graphical presentation 
of the spectra can then be performed using the commercially 
available programs.

Relaxation of Multiquantum Signals

By simulation of multiquantum 2 D spectra on an artificial 
AB spin system we demenstrate here how two relaxation 
mechanisms, implemented above, can be identified. The AB 
spin system with the static parameters, v4-30.0 Hz, vfi=70.0 
Hz and Jab = 10.0 Hz, is assumed to relax purely due to the 
intram이ecular dipolar interaction with rate 卢 =1.0 Hz in 
one simulation and to radomly fluctuating field near the nu­
clear site with rate 必=1.0 Hz in the other case. In the later 
case a perfect correlation of the random fields at each nu- 
시ear sites is also assumed (e=1.0). To utilize the fact, that 
not only the relaxation behaviors of the 力-quantum coher­
ences themselves but also the relative rate between the mul­
tiple and single coherences depend on the interaction types, 
we decided to choose a general method to observe all the 
coherences of the system simultaneously.

The most simple method to generate /)-quantum coher­
ences is the application of two 90° pulses seperated by a 
time interval r, as shown in Figures 2(a). The single quantum 
coherences, transversal magnetisation, created by the first
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Figure 2. Pulse sequences for multiquantum 2D experiments: 
By the sequence in (a) all ^-quantum coherences will be genera­
ted, while in (b) only the single and double quantum signals 
can be observed. The additional delay r* in (c) enables us to 
distinguish the interaction types in the relative intensities of the 
single and double quantum coherences.

Figure 3. A multiquantum 2D spectrum simulated with the pul­
se sequence in Figure 2(b). The chemical shifts are vA = 30.0 
Hz, vb = 70.0 Hz, coupling constant Jab— 10.0 Hz and the delay 
time t=0.025 sec. The nonequilibrium spin system is assumed 
to relax by the intramolecular dipolar interaction with the relaxa­
tion rate r°= 1.0 Hz. The absolute mode of spectrum 由曲 in 
Eq. (59) is selected.

90° pulse are distributed by the second pulse over all p- 
quantum coherences. The third 90° observng pulse brings 
the />-quantum coherences back to the direct observable si­
ngle quantum coherences22. Wokaun and coworkers23 had 
used this pulse sequence to excite the zero, single and dou­
ble quantum signals of an AB system and shown how these 
can be utilized to sudy the interactions between the system 
and their surroundings. They simply measured the line wid­
ths of the related signals, from which the relaxation rate 
*1/T2* could be extracted for each signals. The disadvantage 
of this pulse sequnce is the fact that the intensities of p- 
quantum signals depend on the setting of the transmitter 
frequency (offset frequency). A 180° echo pulse with the 
same phase (Figure 2(b)) between two 90° pulses eliminates 
this drawback, however one observes in this case only the 
single and double quantum coherences. The intensities of 
single and double quantum signals from this pulse sequence 
are mainly proportional to cos(tt/abt) and sin(n/曲t) respecti­
vely22 and therefore the optimal condition for a simultaneous 
excitation of the single and double quantum coherences is 
given by cos(心眞)=sin(丁血t;), •福).A simulation of
this pulse experiment using r=0.25 sec is shown in Figure 
3, represented in the absolute mode SabMe in Eq. (59), where 
the system is assumed to relax by the dipolar interaction. 
In this case the relaxation informations are concentrated in 
the line widths of the signals. The line width, however, is 
known to be a rather insenistive carrier of dynamic informa­
tions, because this can be also broadend by other factors 
such as field inhomogeneity.

To observe the relaxation effects in the more sensitive 
line intensities besides the line width, we introduce here a 
slightly modified pulse sequence. An additional delay time 
r* immediately after the generation of 力-quantum coherences 
and before the t\ evolution (Figure 2(c)) will let the indivi­
dual coherences relax characteristically in relation to the in­
teraction types. The variation of this relaxation differentiating 
delay x* enables to visualize the relaxation mechanisms in 
the coherence intensities rather than the insensitive line wi­
dth in the 2 D spectrum. In Figure 4, the typical dissipation

Figure 4. The fi projections of multiquantum 2D spectra simu­
lated using the the pulse sequence in Figure 2(c). The static 
parameters and the delay time r are same as in Figure 3. The 
system relaxes (a) by the intramolecular dipolar interaction with 
卢=1.0 Hz and (b) by the randomly fluctuating fields around 
the nuclear sites with 卢=L0 Hz and £«»,■= 1.0.
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patterns of the single and double quantum coh은！"ences are 
compared with the variation of the delay r*. The double 
quantum coherence relaxes slower than the single quantum 
signals by the dipolar interation (Figure 4(a)), whereas in 
the case of the random field interaction the reversed relation 
can be observed (Figure 4(b)).

Conclusions

The increasing number of relaxation studies tends to avoid 
the use of simple notation TJ or expressed in Bloch's 
equation. In fact, the complex phenomena of relaxation can­
not be interpreted as the part by 'longitudinal* or * transver­
sal' time constant of each single signal independently. In 
this study a complete master equation has been formulated 
including the explicit form of relaxation superoperator, which 
describes the relaxation in relation to the molecular dyna­
mics. The master operator contains besides the liouvillian 
for system of interest two interaction mechanisms, intramo­
lecular dipolar and random external field interaction, which 
are mainly responsible for spin relaxation in s이ution NMR 
spectroscopy. The diagonal elements of the relaxation matrix 
express the relaxation behavior of the coherences, while the 
offdiagonal elements contain the information about the rela­
tion to each other. It has also been shown that the spectral 
densities can be compressed to the corresponding relaxation 
rates. The master and pulse operator formulated can trance 
the exact time history of the system during a multipulse 
experiment and therefore the whole dynamic informations 
inherent in the spin system are contained in the density 
vector and master operator. The FID in the detection period 
can algebraically reduced to the density vector and master 
and thus finally Fourier transformed analytically to frequency 
spectrum. The nonstationary spectrum can than be expressed 
by an intensity-determining shape vector, a frequency-deter­
mining spectral vector and a coherence-selecting projection 
operator. The algorithm, transferred to a simulation program 
CANDYS, will offer a more convinient way to study dynamic 
phenomena in general and tools to design special pulse se­
quence demanded for experimental works. Simulations in 
Figure 4 have shown how the maximum amount of relaxation 
information can be extracted using a modified 90°-180°-90° 
pulse sequence.
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