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NORM CONVERGENCE OF THE
LIE-TROTTER-KATO PRODUCT FORMULA
AND IMAGINARY-TIME PATH INTEGRAL

TAKASHI ICHINOSE

ABSTRACT. The unitary Lie-Trotter-Kato product formula gives
in a simplest way a meaning to the Feynman path integral for the
Schroding-er equation. In this note we want to survey some of re-
cent results on the norm convergence of the selfadjoint Lie-Trotter-
Kato product formula for the Schrodinger operator —%A + V(x}
and for the sum of two selfadjoint operators A and B. As one
of the applications, a remark is mentioned about an approxima-
tion therewith to the fundamental solution for the imaginary-time
Schrédinger equation.

1. Introduction

The Lie-Trotter—Kato product formula serves, as Nelson [22] noticed,
as a simplest general way to give a meaning of the Feynman path integral
for the imaginary-time as well as real-time Schridinger equation. In this
note we are interested in the one corresponding to the imaginary-time
Schrodinger equation, i.e. heat equation

(1.1) %u(t,m) = —Hu(t,z), t>0; u(0,z)=f(z), z€R%

where H = Hy+V = —5A + V(z) is the nonrelativistic Schrodinger
operator with mass 1 and scalar potential V{z), a real-valued continu-
ous function bounded below. By Kato’s theorem [18], H is essentially
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selfadjoint on C§°(R%) in L? = L2%(R9), and so its unique selfadjoint
extension is also denoted by the same H. The semigroup e~ ¥ solves
(1.1) by u(t,z) = e * f(z), and the Lie-Trotter-Kato product formula

(12) lim (e—tV/Zne—tHo/ne—tV/Zn)n = lim (eff,V/ne—tHg/n)n — e—tH

n—oe n—od

in strong operator topology holds, locally uniformly in ¢ > 0.

The aim of this note is to survey some recent results about opeartor-
norm convergence of the Lie-Trotter-Kato product formula (1.2) with
error estimates and its abstract version, mainly based on our joint works
with Takanobu (9], [10], [11], with Doumeki and Hideo Tamura [2], and
with Hideo Tamura [13], [12], [14]. A survey of an early version was
briefly given in [8].

To describe the results, in general, for the sum of two nonnegative
selfadjoint operators A and B in a Hilbert space with domains D[A] and
D[B], let H = A+ B also denote the form sum of A and B, where we as-
sume for simplicity that the form domain, D[H/?] = D[AY?|nD[B/?,
is dense. If the operator sum A -+ B is selfadjoint (resp. essentially self-
adjoint) on D[A] N D[B], H coincides with A + B (resp. the closure of
A + B). We shall use the following notations:

(1.3)  K(tA,B) = e tB/2e 482 q(t: B, A) = e tBe 4.

Then it is well-known that the Lie-Trotter-Kato product formula

(1.4)

lim K(t/n;A,B)" = lim K(t/n;B,A)" = lim G(t/n;B,A)" =e ¥

n—od n—oc T—r OO

in strong operator topology holds, locally uniformly in £ > 0 {(e.g. [23]).
Now, to describe the result for the Schrédinger operator H, we see

first the Schrédinger semigroup e *F makes sense in LP. In fact, the

solution wu(t,z) of (1.1) is represented by imaginary-time path integral,

i.e. the Feynman-Kac formula (e.g. Simon [25]}

(15) ) = (" P)la) = [ e SV FX(1) (X0,

for f € L?, where p, is the Wiener measure on the space Cp([0, 00) —
R?) of the continuous paths X : [0,00) — R? starting at X(0) = z. In
passing, this formula can also be proved by using the Lie-TrotterKato
product formula (1.2} ([22], [25]).
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The formula (1.5) shows that e~ *¥ defines a bounded operator on
L2, and further a strongly continuous semigroup on LP = LP(R%), for
1 < p < co, and for p = oo, on the Banach space Cyp = Coo(R?)} of
the continuous funections in R? vanishing at infinity, equipped with L
norm.

We have obtained the LP results for Schrédinger operators by use of
the Feynman-Kac formula in [9], [10], and the L? results with operator-
theoretic methods, in Doumeki-Ichinose-Tamura 2] and Ichinose-Tamu-
ra [13], where the problem in the trace norm is also treated.

We also give analogous results [10], [11] for the relativistic Schrodinger
operator H" = Hj+V = +—-A 4+ 1-1+V(z). Note that the Feynman-
Kac formula also holds for the imaginary—time relativistic Schrodinger
equation (1.1) with this H" in place of H (e.g. {7], [15])-

In Section 2 we state these results, and give in Section 3 a sketch of
proof. In Section 4, a remark is given about how good a approximation
the result can give to the fundamental solution of the heat equation.

2. Lie—Trotter—Kato product formula in operator norm

The norm convergence of the Lie-Trotter-Kato product formula (1.4)
is trivial, if both operators A and B are bounded. So it is when two
operators are not necessarily bounded that we are going to deal with
this formula. In the following, results are described first for Schrédinger
operators, and second, abstract ones for the sum of two nonnegative
selfadjoint operators.

2.1. For Schrédinger operators

We first estimate in L? operator normn the difference between K (¢; Hy,

V)= e tV/2e tHop tV/2 and ¢t by a power of small ¢ > 0 with order
greater than 1.
It is B. Helffer [5] (cf. [4], [6]) who first did in L? operator norm
to get O(t?) by pseudo-differential operator calculus, when V(z) is a
C*—function bounded below by b and satisfying |8*V (z)] < Cu(l +
|z|2)2=1eD+/2 for every multi-index « with constant C,, where ay =
max{a,0}. He has called K{t; Hy, V') the Kac operator, for it turns out
to be the transfer operator/matrix for a Kac’s lattice model [16], [17],
[28] in statistical mechanics. He wanted to observe with this kind of error
estimate the asymptotic eigenvalue splitting of K(t; Hy, V), comparing
with the eigenvalues of the Schridinger operator H.
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In the following, || - ||, stands for the LP operator norm, i.e. the
operator norim of bounded operators on L?, 1 < p < 00, or on Cy, for
p=00.

THEOREM 1. (The nonrelativistic case) Let 0 < § < 1. Let m be
a nonnegative integer such that mé < 1 and (m + 1)é > 1. Suppose
that V(z) is a C™—function in R? bounded below by a constant b which
satisfies that

(2.1a) eV ()| < C(V(z) —b+ 1)1 0 <ol <m,

with a constant C > 0, and further that 8*V (), |a| = m, are Holder-
continuous:

(2.1b) 0°V(z) —8°V(y)| < Clz —y|®, z,y<€RY,
with constants C' > 0 and 0 < x < 1. Then it holds that, ast | 0,

- el O(t1+(m+m)/2), m = 0’ 1’
22 IK@H V)=l ={ Ch T D
Note that condition (2.1b) with xk = 1 is equivalent to that 8*V{z),
|oe| =m + 1, are essentially bounded. By £ = 0 we understand 8*V (x),
|ce| = m, bounded.
Then we have from Theorem 1 the following Lie-Trotter-Kato prod-
uct formula for the Schrodinger operator H = Hy + V.

THEOREM 2. (The nonrelativistic case) For the same function V{(z)
as in Theorem 1, it holds that, as n — oo,

(2.3)
N(E (t/m; Ho, V)" e Ly, (G(t/ms Vi Ho)" — &=,
n—n/ZO(t1+x/2), m=0,0<k<1,
= n+(1+n)/20(t1+(1+n)/2)’ m=10<r<1,
n=20(t1+29), m> 2.

A few words for the proof: The first part is a direct consequence of
Theorem 1 with telescoping. But for the second one we have to elaborate
more,

ExAMPLES. The function |z|? (harmonic oscillator potential) satisfies
conditions (2.1ab) for V(z) in Theorem 1 with (6, m,x) = (3,1,1) or
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(3,2,0), |z|* — |z|* (double well potential) with (8, m,s) = (1:3,1) or
(},4,0), and |z| with (J,m, ) = (1,0,1), while 2199 and |2|"!* satisfy
conditions (2.1ab} with (8, m, x) = (1/1999,1998,1) or (1/1999,1999,0)
and (1/7.14,7,0.14}, respectively.

ReEMARK 1. Helffer’s result [5] is included in Theorem 1 with p = 2
and (6, m, k) = (1/2,1,1) or (§, m, k) = (1/2,2,0), because his condition
implies that

24 07V ()] < OV () — b+ 1)1l

for every multi-index a.
Dia-Schatzman [1] has also given an operator-theoretic proof of Helf-
fer’s result.

REMARK 2. Theorems 1 and 2 are valid with the operator Hy replaced
by the magnetic Schrédinger operator Hp(A) = 5(—40 — A(x))? with
vector potential A(z) including the case of constant magnetic fields (see
9, cf. [2)).

THEOREM 3. (The relativistic case} Let V(z) be the same function
as in Theorem 1. Then it holds that, ast | 0,

(2.5)

O(tT+), m=0,0<x<1,
O(t*|Intl), (m,x)=(0,1)or(1,0),
O(t?), m=10<k<1,
o(t*+?%), m>2.

Kt H, V) — e |, =

Then we have from Theorem 3 the following Lie—Trotter—Kato prod-
uct formula.

THEOREM 4. (The relativistic case) For the same function V(z) as
in Theorem 1, it holds that, as n — oo,

(2.6)
(K (t/ms HE, VY e~y (Ctfns V, HY" — e,
'n,_K'O(t]-'Hi)’ m = 0’0 < K< 17
n~rO(#| In(t/n)]), (m, k) =(0,1)or (1,0),
n~lO(t%), m=1,0<k<1,

nTP 01T, m > 2.
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2.2. Abstract results

To describe the resuits of the abstract version of the Lie-Trotter—
Kato product formula in operator norm, we keep those notations around
(1.3) in Section 1, about nonnegative selfadjoint operators 4 and B in
a Hilberi space.

It is Rogava [24] who first proved that if A is strictly positive, i.e.
A > 41 for some § > 0 (I stands for the identity operator) with D[A] C
D[B], and A+ B is selfadjoint on D[H]| = D[A} N D[B] = D[4], then
(2.7)

1K (t/n; B, A" —e ||, ||G(t/n; B,A)" — e™™|| = O(n~ /2 Inn),

as n — o0, uniformly in ¢ > 0. In this case, B is A-bounded. Notice
that in our Theorems 2 and 4, neither V is Hybounded nor Hj is V-
bounded. So Theorems 2 and 4 are independent of this abstract result
by Rogava, though, for instance, in Theorem 2, it can been shown that,
if V(z) is besides a C' function, then H = Hy + V is selfadjoint on
D[H] = D[Hy]n D[V].

Stimulated by Rogava’s result, we have shown in Ichinose-Tamura
[14] (cf. [12]) a better error bound though with a stronger condition: if
A>61, B> 41 for some 8 > 0, and D[A*] C D[B] for some 0 < a < 1,
then

(2.8) 1K (t/n; B, A)"—e~*"[, [[G(t/n; B, A)" —~|| = O(n lnn),

as n — 00, locally uniformly in ¢ > 0. In fact, we have proved the case
where the operator B = B(t) may be t-dependent.

Around the same time, Neidhardt and Zagrebnov [19] have proved
(2.8), but uniformly in ¢t > 0, if A > §I, B > §I for some § > 0, and
D[A] C D[B] and B is A-bounded with relative bound less than 1. In
fact, they have considered more general functions f(z), g(z) than e
to define the products f(tA)g(¢B) instead of G(t; A, B), etc. For further
related results see Neidhardt-Zagrebnov [20], [21].

However, the Lie-Trotter—Kato product formula in operator norm
does not in general hold for the form sum H = A B, even when B
is A-form-bounded with relative bound less than 1. This can be seen
by an example Hiroshi Tamura [27] has recently constructed. In his
example, further, A > 47 for some 4 > 0, B > 0, and the operator sum
H = A+ B is essentially selfadjoint on D[A] N D[B], but not selfadjoint
there, so that it turns out that this pair of A and B does neither satisfy
Rogava’s condition nor correspend to the case for the pair of Hy and V'
in Theorem 2.
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We close this section with the following two comments.

One concerns whether the convergence of (2.3) and (2.6) in Theorems
2 and 4 and of (2.7) and (2.8) in the abstract results just mentioned above
is “uniform” or “locally uniform” in ¢ > 0. In fact, Theorems 2 and 4
hold “uniformly” in ¢ > 0, if V(x) is strictly positive, i.e. V(z) > é on
R¢ for some § > 0, and the same will be true for those abstract results
mentioned above, if one of A and B is strictly positive.

The other concerns how about Theorem 1 for K(t; V, Hy), G(t;V, Hg)
and G(t; Hy, V) in place of K(t; Hy, V). In this case we could only prove
an estimate worse than (2.2). The same is true for Theorem 3. However,
the Lie-Trotter-Kato product formula in Theorems 2 and 4 as well as
the abstract version described in Section 2.2 holds, of course, for them
as well as for K(t; A, B) and G(t; A, B).

3. Sketch of proof of Theorem 1

We only sketch the idea of proof of Theorem 1 by probabilistic meth-

ods. The proof of Theorem 3 is similar. Putting Q(¢) = K(t; Hy, V) —

e~ we can write by the Feynman-Kac formula (1.5) as

(3.1) (Q(1)f)(z) = Ew[(e~%(V(w)+V(X(tm e I3 VX (dsy g X(t))]’

for f € C§°(RY) with || fli, = 1, where E, is the expectation or integral
with respect to the Wiener measure p,. We need to prove the LP norm
of Q(t)f has the estimate as on the right-hand side of (2.2).

Let p(t,z) = (2mt)~4/2¢=="/2 be the integral kernel of e=tH0, heat
kernel. We use the conditional expectation E,| - | X(t) = y] to rewrite
(3.1) as

QU)(=) = f F)pltsz — 0)Eufolt, z,9) | X(2) = vldy,

— o V@) +V(y) _ o~ [o VIX(s))ds

(3.2)
vt z,y)
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We have by Taylor’s theorem,

m .
u(t, 2, y) = — wit,z,y)e FVERFVED _ Z &ﬁ?ﬁe—%(meV(y))
§=2

m!

1
_ ’w(t,x,y)erl / d8(1 - e)me—(l—ﬁ)%('lf(:s)-}-\/(y))fg fot V(X (s))ds
0

3
EZ {t,z,y),

where
wit,z,y) = L(V(2) + V(1)) - fo V(X(s))ds

/2 t
:_fo (V(X(s)) — V(z) )ds—//z(V(X(SJ)*V(y))ds

Then we estimate d;(t, z,y) = E-[v:(t,z,v)| X(¢) =y], ¢ =1,2,3, by

a sum of powers of |z — y| and ¢. For instance, if m > 2, we can show

it 7, 9)] <3 (|2 — y[FO() + O 202y
+z = y| "0 + O H ),
|da(t, z, y}t < Z{Z(lw — yRO(17k8) 4 O(t(1128)ik/2y)

i=2 k=1

+ |z — ylj(m+n)0(tj) + O(t(m+2+n)j/2)}’
lda(t, z,y)| < Z y|(m+1)k0(t{m+1)k6) +O(t(l+26}(m+1)k/2))

=1
+ |z yl(m+1)(wz+n)o(tm+l) + O(t{m+1)(1+(m+n)/2))_

Hence we have, for small ¢t > 0,

3
Q) fllp < Z I / Fly)p(t, e — y)ds(t, o, y)dyllp, < OFF2),
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4. On approximation to the fundamental solution of the heat
equation

Let 8 = 0 or V(z) > 0. In this section we write the Kac operator
K(t; Hy, V) assimply K(¢). Let K(t)(z,y) be the integral kernel of K(t),
and e *H(z,y) the integral kernel of e=*¥ or the fundamental solution
of the heat equation (1.1). Then a careful check of our proof of Theorem
2.1 in [10, 11], which is sketched in Section 3, will show

K(t)(z,y) — e H (z,y) = O 19)(2mt) 4/ 2~ (a—v) /4t
(4.1) = O(t'**)p(2t,z — y),

where a is the respective constant (m+x)/2 or 2§ on the right-hand side
of (2.2) depending on the regularity of V(z). Recall that the free heat
kernel is given by e tHo(z,y) = p(t,z —y) = (2nt)~ d/2~(e~v)*/2 Then
the integral kernel K (t/n)"(x,y) of K (t/n)™ can approximate e ¥ (z,y)
in such a way as

(4.2) K(t/n)"(z,y) — e H(z,y) = n_aO(tH'”)(2ﬂt)_d/26_(m_y)2/4t,

as n — o0,
Indeed, we have by telescoping with zp =z and =, = y

|K(t/n)" (@,y) — e (,)|

< ] K (t/n) (20, 21) — e~/ (g, 1) e~ VI () 2, )dry

+Zf]ded (t/nyY o, 2-1)

X K (t/n)(z;-1,25) — e~ (@50, m)|e” I (@5, 0, )d; o da;
+/ K(t/n)" (@0, 2n- 1| K(t/n) (@n_1, Tp)—e~ /™M@y 1, 20)|[deny.
R4
The right-hand side is seen by (4.1) to be bounded by

f O((£)*+*)p(2t/n, 20 — 21)p((n — 1)t/ 2y — )y

+ 3 ([ 96 = 0t/nz0 - 500
x p(2t/n,xi_ —x;)p{(n — jit/n,z; — xp)dz;_da;

+ fp((n — Dt/n, 25 — 2,—1)O((L) (2t /1, 2oy — 2o )d2n—y,
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which is less than or equal to
O((%)H“)Tl (fp(Zt/n, zg — x1)p(2(n — 1}t /n, 21 — z,)dzy

+ RZ:;I //p(2(j —1)t/n, 20 — 1)

X p(2t/n,z; 1 — x;)p(2(n — §)t/n,xz; — z,)dz;_1dx;

+ /p(2(n - .l)t/n,:vg —Tn_1)p(2t/n,2n_1 — mn)dmnl).

Thus we obtain
K (t/n)" (@,9) — e~ (2,9)| = n= 0+ *)20p(2, 7o — .,),

concluding (4.2). In fact, this issue was also studied by a little itricate
probabilistic methods in [26].

Though it may be a new observation in the present note, by a further
careful check of our proof of Theorem 2.1 in [10, 11] we can see that if
V{z) is a smooth, namely, C*—function, then (4.1) holds, together with
all the «,y—derivatives of the left-hand side, so that the same is true for
(4.2).

In [3] Fujiwara constructed the fundamental solution e=*H (z, ) of
the Schrddinger equation, i.e. the integral kernel of e~*¥ based on the
idea of the Feynman path integral. He proved the following result.

Assume that V{z) is smooth and satisfies

[0°V (z)] < Co(1 +2%)E1eD+/2

for every multi-index ¢« with constant C,, though V{z) need not be
bounded below. Put

(B@))(a) = ity 7 [ 50 4y

for f € Cg°(RY), with action S(t,2,y) = [} [L(dX (s)/ds)2 V(X (s))]ds,
where X(s) is the classical trajectory starting at X(0) = y and ending
at X (t) = z. Then for ¢ > 0 sufficiently small, one has

(4.3) E(t/n)™(z,y) — e "H (z,y) = n LO(%)(2nt)~¥/2,
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as n — oo, uniformly in z, ¥, together with all the z, y—derivatives of the
left-hand side.

The potential V' (z) in this result satisfies (2.4) or condition (2.1ab)
with (§,m,x) = (3,2,0), so that it turns out that « = 1. What we
have observed above is that the integral kernel of the K{{/n)™ can just
vield an analogous approximation to the fundamental solution of the
heat equation.

Added in Proof on Feb. 5, 2001: In a forthcoming paper “The norm
convergence of the Trotter-Kato product formula with error bound” by
T. Ichinose and Hideo Tamura, to appear in Commun. Math. Phys.,
it has been shown that the Lie-Trotter-Kato product formula holds in
norm for the semigroup generated by the operator sum H = A+ B of
two nonnegative selfadjoint operators A and B which is selfadjoint.
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