• Title/Summary/Keyword: Underactuated systems

Search Result 33, Processing Time 0.022 seconds

Nonlinear Control of Residual Say of a Container Crane in the Perspective of Controlling an Underactuated System (불충분한 작동기를 가진 매니퓰레이터의 비선형제어)

  • 김영민;홍금식;이교일
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.249-252
    • /
    • 1997
  • In this paper the sway-control problem of a container crane is investigated in the perspective of controlling an underactuated mechanical system. For fast loading/unloading of containers from the ship, quick suppression of the remaining swing motion of the container at the end of each trolley stroke is crucial. Known nonlinearities are fully incorporated by feedback linearization. Robustness is enhanced by variable structure control. Compared with the linear LQ control, much better performance can be obtained.

  • PDF

Sliding Mode Control for a Robot Manipulator with Passive Joints

  • Kim, Won;Shin, Jin-Ho;Lee, Ju-Jang
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.4 no.1
    • /
    • pp.78-83
    • /
    • 2002
  • In this paper, we propose a sliding mode controller for a robot manipulator with passive joints. A robot manipulator with passive joints which are not equipped with any actuators is a kind of underactuated system. Underactuated systems have some advantages compared to fully-actuated ones. For example, they weigh less and consume less energy because they have smaller number of components than fully-actuated ones. However the control of an underactuated manipulator is much more difficult than that of fully- actuated robot manipulator. In this paper a complex dynamic model of a manipulator with passive joints is manipulated for sliding mode control. Sliding mode controllers are designed for this complex system and the stability of the controllers is proved mathematically. Finally a simulation for this control system is executed for evaluating the effectiveness of the designed sliding mode controller.

Exponential Stabilization of a Class of Underactuated Mechanical Systems using Dynamic Surface Control

  • Qaiser, Nadeem;Iqbal, Naeem;Hussain, Amir;Qaiser, Naeem
    • International Journal of Control, Automation, and Systems
    • /
    • v.5 no.5
    • /
    • pp.547-558
    • /
    • 2007
  • This paper proposes a simpler solution to the stabilization problem of a special class of nonlinear underactuated mechanical systems which includes widely studied benchmark systems like Inertia Wheel Pendulum, TORA and Acrobot. Complex internal dynamics and lack of exact feedback linearizibility of these systems makes design of control law a challenging task. Stabilization of these systems has been achieved using Energy Shaping and damping injection and Backstepping technique. Former results in hybrid or switching architectures that make stability analysis complicated whereas use of backstepping some times requires closed form explicit solutions of highly nonlinear equations resulting from partial feedback linearization. It also exhibits the phenomenon of explosions of terms resulting in a highly complicated control law. Exploiting recently introduced Dynamic Surface Control technique and using control Lyapunov function method, a novel nonlinear controller design is presented as a solution to these problems. The stability of the closed loop system is analyzed by exploiting its two-time scale nature and applying concepts from Singular Perturbation Theory. The design procedure is shown to be simpler and more intuitive than existing designs. Design has been applied to important benchmark systems belonging to the class demonstrating controller design simplicity. Advantages over conventional Energy Shaping and Backstepping controllers are analyzed theoretically and performance is verified using numerical simulations.

Dynamics and motion control of an underactuated manipulator (비구동 관절을 가지는 매니퓰레이터의 동력학과 운동제어)

  • Yu, Kee-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.3 no.5
    • /
    • pp.476-481
    • /
    • 1997
  • 본 논문에서는 비구동 관절을 가지는 2링크 매니퓰레이터의 동력학 해석과 운동제어를 제1적분을 기초로 하여 전개하고 있다. 매니퓰레이터의 운동이 제1적분의 적분상수에 의해서 기술되는 것을 보이고, 제1적분을 이용하여 매니퓰레이터의 동력학을 해석하고 있다. 그리고 해석된 동력학을 적극적으로 이용하는 운동제어 알고리즘을 구성하고 시뮬레이션을 통하여 확인하고 있다. 끝으로 비구동 관절에 마찰이 작용하는 경우, 브레이크등의 보조수단을 이용하지 않고도 매니퓰레이터의 제어가 가능함을 보이고 있다.

  • PDF

Stabilizing Control Law of Underactuateted Spacecraft (작동기 수가 부족한 위성체의 자세안정화기법)

  • 김성필;김유단
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.102-102
    • /
    • 2000
  • In this paper, attitude control laws are proposed for an underactuated spacecraft. The stabilization problem of the complete system including the kinematics as well as the dynamics of the spacecraft is addressed. The quaternion parameterization is used. The key idea is that the angular velocity of a uncontrolled axis is first regulated and then, the other states are regulated. Based on numerical simulations, it is conjectured that the closed-loop nonlinear system of a spacecraft with the proposed control laws is globally asymptotically stable. The control law for the stabilization problem around the origin as well as the command following problem are proposed. The numerical examples indicate that the stabilization of an underactuated asymmetric spacecraft can be achieved successfully.

  • PDF

Design of Path Tracking Controller for Underactuated Autonomous Underwater Vehicle Using Approach Angle Concept (접근 각도 개념을 이용한 과소 작동기 무인 잠수정의 경로 추적 제어기 설계)

  • Kim, Kyoung-Joo;Choi, Yoon-Ho;Park, Jin-Bae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.2
    • /
    • pp.225-231
    • /
    • 2012
  • In this paper, we propose a method for designing the path tracking controller using an approach angle concept for an underactuated autonomous underwater vehicle (AUV). The AUV is controlled by the surge speed and yaw rate: there is no side thruster. To solve this underactuated AUV problem in the path tracking, we introduce an approach angle concept which makes the AUV converge to the reference path. And we design the path tracking controller using the proposed approach angle. To design the path tracking controller, we obtain the new vehicle's error dynamics in the body-fixed frame, and then design the path tracking controller based on Lypunov direct method. Finally, some simulation results demonstrate the effectiveness of the proposed controller.

Robust Fault-Tolerant Control for a Robot System Anticipating Joint Failures in the Presence of Uncertainties (불확실성의 존재에서 관절 고장을 가지는 로봇 시스템에 대한 강인한 내고장 제어)

  • 신진호
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.10
    • /
    • pp.755-767
    • /
    • 2003
  • This paper proposes a robust fault-tolerant control framework for robot manipulators to maintain the required performance and achieve task completion in the presence of both partial joint failures and complete joint failures and uncertainties. In the case of a complete joint failure or free-swinging joint failure causing the complete loss of torque on a joint, a fully-actuated robot manipulator can be viewed as an underactuated robot manipulator. To detect and identify a complete actuator failure, an on-line fault detection operation is also presented. The proposed fault-tolerant control system contains a robust adaptive controller overcoming partial joint failures based on robust adaptive control methodology, an on-line fault detector detecting and identifying complete joint failures, and a robust adaptive controller overcoming partial and complete joint failures, and so eventually it can face and overcome joint failures and uncertainties. Numerical simulations are conducted to validate the proposed robust fault-tolerant control scheme.

Nonlinear Model-Based Disturbance Compensation for a Two-Wheeled Balancing Mobile Robot (이륜 밸런싱 로봇에 대한 비선형 모델 기반 외란보상 기법)

  • Yu, Jaerim;Kim, Yongkuk;Kwon, SangJoo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.10
    • /
    • pp.826-832
    • /
    • 2016
  • A two-wheeled balancing mobile robot (TWBMR) has the characteristics of both nonlinear and underactuated system. In this paper, the disturbances acting on a TWBMR are classified into body disturbance and wheel disturbance. Additionally, we describe a nonlinear disturbance observer, which is suitable as a single input multi-output (SIMO) system for the longitudinal motion of TWBMR. Finally, we propose a reasonable disturbance compensation technique that combines the indirect reference input of equilibrium point and the direct torque compensation input. Simulations and experimental results show that the proposed disturbance compensation method is an effective way to achieve robust postural stability, specifically on inclined terrains.

Underactuated Finger Mechanism for Body-Powered Partial Prosthesis (신체 힘에 의해 동작되는 부분 의수를 위한 부족구동 손가락 메커니즘)

  • Yoon, Dukchan;Lee, Geon;Choi, Youngjin
    • The Journal of Korea Robotics Society
    • /
    • v.11 no.4
    • /
    • pp.193-204
    • /
    • 2016
  • This paper presents an anthropomorphic finger prosthesis for amputees whose proximal phalanx is mutilated. The finger prosthesis to be proposed is able to make the amputees to perform the natural motion such as flexion/extension as well as self-adaptive grasping motion as if normal human finger does. The mechanism of finger prosthesis with three degrees-of-freedom (DOFs) consists of two five-bar and one four-bar linkages. Two passive components composed of torsional spring and mechanical stopper and only one active joint are employed in order to realize an underactuation. Each passive component is installed into the five-bar linkage. In order to activate the finger prosthesis, it is required for the user to flex and extend the remaining proximal phalanx on the metacarpophalangeal (MCP) joint, not an electric motor. Thus the finger prosthesis conducts not only the natural motion according to his/her intention but also the grasping motion through the deformation of springs by the object for human finger-like behavior. In order to reveal the operation principle of the proposed mechanism, kinematic analysis is performed for the linkage design. Finally both simulations and experiments are conducted in order to reveal the design feasibility of the proposed finger mechanism.

Multi-level DVS Guidance and Output-feedback Path-following Control for Marine Surface Vehicles

  • Deng, Ying-Jie;Im, Nam-kyun
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2018.11a
    • /
    • pp.256-257
    • /
    • 2018
  • This paper deals with the path-following control for marine surface vehicles with underactuated characteristics. In consideration of practical limitations of actuators, an improved DVS(dynamic virtual ship) guidance algorithm is proposed with the multi-level DVS optionally selected to be tracked. To address the output-feedback control issue, an adaptive FLS(fuzzy logical systems) is devised to online approximate the kinematic states. Based on that observing framework, the path-following control law is thereafter derived. Simulations testify effectiveness of the proposed scheme

  • PDF