• Title/Summary/Keyword: Uncertainty measurement

Search Result 930, Processing Time 0.027 seconds

RED GIANT BRANCH OF THE METAL POOR GLOBULAR CLUSTERS: I. BUMP, TIP, AND DISTANCE FROM NEAR INERARED PHOTOMETRY

  • Sohn Y.J.;Kim J.W.;Kang A.
    • Journal of Astronomy and Space Sciences
    • /
    • v.23 no.2
    • /
    • pp.91-96
    • /
    • 2006
  • We use near-infrared observations of eight selected Galactic globular clusters to estimate their distances by comparing the observed and theoretically predicted K magnitudes of the red giant branch bumps and tips. The K magnitude levels of the RGB bump and tip have been measured from the luminosity function of the selected RGB stars in the clusters. Theoretical absolute $M_k$ magnitudes of the RGB bump and tip are taken from the Yonsei-Yale isochrones. Comparing the observed apparent K magnitude with the derived absolute $M_k$ magnitude, we calculate the distance moduli of the clusters. We discuss the dependency of the derived distance modulus on the cluster age and the uncertainty of the distance measurement from the near-infrared photometry of the RGB bump and tip.

Lateral Force Calibration in Liquid Environment using Multiple Pivot Loading (Multiple Pivot loading 방법을 이용한 액체 환경에서의 수평방향 힘 교정)

  • Kim, Lyu-Woon;Chung, Koo-Hyun
    • Tribology and Lubricants
    • /
    • v.29 no.2
    • /
    • pp.91-97
    • /
    • 2013
  • Quantifying the nanoscale force between the atomic force microscopy (AFM) probe of a force-sensing cantilever and the sample is one of the challenges faced by AFM researchers. The normal force calibration is straightforward; however, the lateral force is complicated due to the twisting motion of the cantilever. Force measurement in a liquid environment is often needed for biological applications; however, calibrating the force of the AFM probes for those applications is more difficult owing to the limitations of conventional calibration methods. In this work, an accurate nondestructive lateral force calibration method using multiple pivot loading was proposed for liquid environment. The torque sensitivity at the location of the integrated probe was extrapolated based on accurately measured torque sensitivities across the cantilever width along a few cantilever lengths. The uncertainty of the torque sensitivity at the location of the integrated tip was about 13%, which is significantly smaller than those for other calibration methods in a liquid environment.

Fault detection of chemical process using observer scheme (Observer를 이용한 화학공정의 이상감지)

  • 최용진;오영석;윤인섭
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.589-594
    • /
    • 1993
  • This paper presents a fault detection strategy that discriminates the faulty sensor and that detects the component fault using a bank of observers for the system in which sensor fault and component fault can occur simultaneously. Observers as many as the number of measurements are designed, and each observer uses measurements excluding sequentially one measurement, to estimate the state variables. The faulty sensor can be found out by comparing each state variable from different observer. Next, component fault can be detected by using measurements from the sensors excluding the faulty sensor. The suggested strategy is applied to a nonisothermal, series reaction with unknown reaction kinetics in a CSTR. This strategy is found out to perform well even in the case that the sensor and component fault occur simultaneously. Since each observer is designed to be independent of reaction kinetics, this strategy is not affected by the model uncertainty and nonlinearity of the reaction kinetics.

  • PDF

Motion Estimation Considering Uncertain Time Delayed Measurements for Remote Control (원격조종을 위해 불확실한 시간 지연 측정값을 고려한 모션 추정 방법)

  • Choi, Min-Yong;Chung, Wan-Kyun;Choi, Won-Sub;Yi, Sang-Yup;Park, Jong-Hoon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.8
    • /
    • pp.792-799
    • /
    • 2008
  • Motion estimation is crucial in a remote control for its convenience or accuracy. Time delays, however, can occur in the problem because data communication is required through a network. In this paper, state estimation problem with uncertain time delayed measurements is addressed. In dynamic system with noise, after taking measurements, it often requires some time until that is available in the filter algorithm. Standard filters not considering this time delays cannot be used since the current measurement is related with a past state. These delayed measurements are solved with augmented extended Kalman filter, and the uncertainty of delayed time is also resolved based on an explicit formulation. The proposed method is analyzed and verified by simulations.

Hybrid Position/Force Control of Robot Manipulator using Fuzzy Logic Control

  • Ahn, Ihn-Seok;ahn, Kwang-Seok;Kim, Sang-Bin;Jang, Jun-Oh;Park, Sang-Bae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.129.5-129
    • /
    • 2001
  • When a robot manipulator performs some task like grinding or assembling, not only the position control but also the force control of the tools connected to the robot must be controlled. But at this time We were received the uncertainty problems of system information for the force control, for example disturbance, senor resolution and measurement noise. Therefore we proposed fuzzy logic control method instead of existing control theory for the robot manipulator control, for example PID control method. In this paper, We proposed hybrid position/force control of robot manipulator using fuzzy logic control method. To show the validity of the proposed fuzzy controller, We compared fuzzy controller with conventional PID controller.

  • PDF

Integrated Design of Servomechanisms Using a Disturbance Observer (외란관측기를 이용한 서로계의 통합설계)

  • Kim Min-Seok;Chung Sung-Chong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.4 s.235
    • /
    • pp.591-599
    • /
    • 2005
  • This paper proposes a systematic design methodology for high-speed/high-precision servomechanisms by using a disturbance observer. A multiplicative uncertainty model and a two degree-of-freedom controller composed of a disturbance observer (DOB) and a PD controller are considered as subsystems. Analysis of the system performance, such as internal stability and bandwidth of a servomechanism according to subsystem parameters is conducted for better understanding of the dynamic behavior and interactions among the subsystem parameters. Then, an integrated design methodology, where the interactions are considered simultaneously, is applied to design processes of the servomechanism. The tradeoff relationship between disturbance suppression and measurement noise rejection of the DOB is considered through the design process. Numerical case studies show the improved possibility to evaluate and optimize the dynamic motion performance of the servomechanism. Moreover, the disturbance observer designed based on the proposed design methodology yields excellent disturbance suppression performance.

A Real-Time Measurement of Slug Flow Using Electromagnetic Flowmeter with High frequency Triangular Excitation (고주파 삼각파 여자법을 사용한 실시간 슬러그 유동 측정용 전자기유량계)

  • Ahn, Yeh-Chan;Cha, Jae-Eun;Kim, Moo-Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.11
    • /
    • pp.1570-1577
    • /
    • 2002
  • In order to investigate the characteristics of two-phase slug flow, an electromagnetic flowmeter with 240Hz triangular AC excitation was designed and manufactured. The signals and noise from the flowmeter were obtained, and analyzed in comparison with the observations with a high speed CCD camera. The uncertainty of the flowmeter under single-phase flow was $\pm$ 2.24% in real-time. For two-phase slug flow, electromagnetic flowmeter provided real-time simultaneous measurements of the mean film velocity around Taylor bubble and the relative location and the length of the bubble. Besides, it is an easier and cheaper method for measuring mean film velocity than others such as photochromic dye activation method or particle image velocimetry.

On the Linear Harmonic Analysis of Engine Exhaust and Intake Systems

  • Peat, Keith
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.27-33
    • /
    • 2001
  • Linear harmonic analysis is a convenient and generally accurate method to use for the acoustic analysis of intake and exhaust silencers for IC engines. The major uncertainty in this form of modelling is the characterisation of the source, which is inherently nonlinear and time-variant. Experimental methods are generally used to determine the source characteristics, and in particular the indirect method is most suitable for an IC-engine source. With reference to an idealised linear time-variant source, it is found that the characteristics of a time-variant source as determined by the indirect method have no physical relevance. The direct method of experimental measurement appears to have some advantage over the indirect method, although in practice it is difficult to apply to an IC engine source. Again, an idealised linear time-variant source can be used to indicate that the characteristics of a time-variant source as determined by the direct method also have no physical relevance. Strangely, these meaningless measured source properties can nevertheless be used to accurately predict the radiated noise from an IC engine and silencer system.

  • PDF

Measurement Uncertainty Analysis for Fluctuating Hull Pressure (선미변동압력 계측시험에서의 불확실성 해석)

  • G.I. Choi
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.30 no.4
    • /
    • pp.46-60
    • /
    • 1993
  • Accurate measurements of fluctuating pressure in the cavitation tunnel are necessary to predict vibration and noise intensities in full scale ship. In this paper, the results of an experimental study on fluctuating pressure induced by a cavitating propeller are presented and discussed. Extensive measurements at several propeller revolutions are made using the flat plate to understand controversial problems of the effects of propeller revolution in the cavitation tunnel. The analysis of the uncertainties in experimental measurements and results is used to estimate the errors in uniform flow.

  • PDF

Low Fiele Measurement of 0.1 mT by Rabi's NMR Method (Rabi법 핵자기 공명에 의한 0.1 mT의 저자장 측정)

  • 유권상;김철기;우병칠;김창석
    • Journal of the Korean Magnetics Society
    • /
    • v.3 no.2
    • /
    • pp.139-142
    • /
    • 1993
  • The Rabi's NMR experiment using polarized flowing water was performed in order to measure the low field and the good NMR signal was obtained in the range of 0.1 mT. There was a change in amplitude and phase of signal due to the sinusoidal variation with the increasing RF field. The nominal field could be determined within a few tens ppm uncertainty by the NMR signal under the optimized RF condition.

  • PDF