• Title/Summary/Keyword: Uncertain parameters

Search Result 446, Processing Time 0.019 seconds

Use of MAAP in Generating Accident Source Term Parameters

  • Kim, Jong-Wok;Yun, Joeng-Ik;Kang, Chang-Sun
    • Nuclear Engineering and Technology
    • /
    • v.30 no.3
    • /
    • pp.235-244
    • /
    • 1998
  • The parametric model method determines the accident source term which is Presented by a set of source term parameters. In this method, the cumulative distribution of each source term parameter should be derived for its uncertainty analysis. This paper introduces a method of generating the parameters in the form of cumulative distribution using MAAP version 4.0. In MAAP, there are model parameters which could incorporate uncertain physical and/or chemical phenomena. In general, the model parameters do not have a point value but a range. In this paper, considering that, the input values of model parameters influencing each parameter are sampled using LHS. Then, the computation results are shown in cumulative distribution form. For a case study, the CDFs of FCOR and WES of Kori Unit 1 are derived. The target scenarios for the computation are the ones whose initial events are large LOCA, small LOCA and transient, respectively. It is found that the computed CDF's in this study are consistent to those of NUREG-1150 and the use of MAAP is proven to be adequate in assessing the parameters of the severe accident source term.

  • PDF

On-Line Parameter Estimation Scheme for Uncertain Takagi-Sugeno Fuzzy Models

  • Cho, Young-Wan;Park, Chang-Woo
    • International Journal of Control, Automation, and Systems
    • /
    • v.2 no.1
    • /
    • pp.68-75
    • /
    • 2004
  • In this paper, an estimator with an appropriate adaptive law for updating parameters is designed and analyzed based on the Lyapunov theory. The adaptive law is designed so that the estimation model follows the parameterized plant model. Using the proposed estimator, the parameters of the T-S fuzzy model can be estimated by observing the behavior of the system and it can be a basis for indirect adaptive fuzzy control.

Robust stability analtsis for a flexible arm

  • Shimomoto, Yoichi;Kisu, Hiroyuki;Ishimatsu, Takakazu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.203-206
    • /
    • 1995
  • We investigate the applicability of the theory of robust stabilization with respect to additive, stable perturbations of a normalized left-coprime factorization to controller design of a flexible arm with uncertain parameters.

  • PDF

The Design of an Improved PID Controller by Using the Kalman Filter (칼만 필터를 이용한 개선된 PID 제어기 설계)

  • Cha, In-Hyeok;Gwon, Tae-Jong;Han, Chang-Su
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.1 s.173
    • /
    • pp.7-15
    • /
    • 2000
  • This paper suggests an auto-tuning I'll) control algorithm that uses the advantage of PID controller and improves the system performance. The PID gains being designed by th- conventional method are tuned through the plant parameter estimation. The Extended Kalman Filter is used for the estimation. It works as an observer and noise filter. Moreover, as the plant state and the uncertain parameter could be estimated simultaneously, the proposed algorithm is very useful in the tracking control of a system with uncertain parameter. The auto-tuning I'll) controller could maintain the system performance in the case that the plant parameters are uncertain or varying. The proposed control algorithm requires a correct estimation of the plant parameter. The controller stability and the performance is considered through the stability criteria and a servo motor model. The Kalman filter estimates the most sensitive plant parameter, which is determined by the sensitivity analysis.

Robust Model-Following Controller for Uncertain Dynamical Systems by State-Space Representation (불확실한 동적 시스템의 상태공간 표현 강인 모델추종 제어기)

  • Park, Byung-Suk;Yoon, Ji-Sup;Kang, E-Sok
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.50 no.12
    • /
    • pp.575-583
    • /
    • 2001
  • It is hard to obtain good robust performance and robust stability for uncertain and time-varying system. The robust 2-DOF controller is frequently used to obtain the desired response and the good robustness. Two controllers can be independently designed. Generally, one controller reduces sensitivity to parameter variations, nonlinear effects, and other disturbances. On the other hand, the other controller reduces the error between the desired command and output. In this paper, the various robust perfect MFCs(model-following controllers) combined with TDC(Time Delay Control) are designed, and the imperfect stable MFC combined with TDC and SMC(Sliding Mode Control) is proposed. These controllers are based on the method of designing robust 2-DOF controllers for dynamic system with uncertainty. The performance of the proposed imperfect sable MFC has been evaluated through computer simulations. The simulation results indicate that the proposed controller shows the excellent performance characteristics for an overhead crane with uncertain and time-varying parameters.

  • PDF

An iterative learning and adaptive control scheme for a class of uncertain systems

  • Kuc, Tae-Yong;Lee, Jin-S.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10b
    • /
    • pp.963-968
    • /
    • 1990
  • An iterative learning control scheme for tracking control of a class of uncertain nonlinear systems is presented. By introducing a model reference adaptive controller in the learning control structure, it is possible to achieve zero tracking of unknown system even when the upperbound of uncertainty in system dynamics is not known apriori. The adaptive controller pull the state of the system to the state of reference model via control gain adaptation at each iteration, while the learning controller attracts the model state to the desired one by synthesizing a suitable control input along with iteration numbers. In the controller role transition from the adaptive to the learning controller takes place in gradually as learning proceeds. Another feature of this control scheme is that robustness to bounded input disturbances is guaranteed by the linear controller in the feedback loop of the learning control scheme. In addition, since the proposed controller does not require any knowledge of the dynamic parameters of the system, it is flexible under uncertain environments. With these facts, computational easiness makes the learning scheme more feasible. Computer simulation results for the dynamic control of a two-axis robot manipulator shows a good performance of the scheme in relatively high speed operation of trajectory tracking.

  • PDF

Modal-based mixed vibration control for uncertain piezoelectric flexible structures

  • Xu, Yalan;Qian, Yu;Chen, Jianjun;Song, Gangbing
    • Structural Engineering and Mechanics
    • /
    • v.55 no.1
    • /
    • pp.229-244
    • /
    • 2015
  • H-infinity norm relates to the maximum in the frequency response function and H-infinity control method focuses on the case that the vibration is excited at the fundamental frequency, while 2-norm relates to the output energy of systems with the input of pulses or white noises and 2-norm control method weighs the overall vibration performance of systems. The trade-off between the performance in frequency-domain and that in time-domain may be achieved by integrating two indices in the mixed vibration control method. Based on the linear fractional state space representation in the modal space for a piezoelectric flexible structure with uncertain modal parameters and un-modeled residual high-frequency modes, a mixed dynamic output feedback control design method is proposed to suppress the structural vibration. Using the linear matrix inequality (LMI) technique, the initial populations are generated by the designing of robust control laws with different H-infinity performance indices before the robust 2-norm performance index of the closed-loop system is included in the fitness function of optimization. A flexible beam structure with a piezoelectric sensor and a piezoelectric actuator are used as the subject for numerical studies. Compared with the velocity feedback control method, the numerical simulation results show the effectiveness of the proposed method.

Modal-based model reduction and vibration control for uncertain piezoelectric flexible structures

  • Yalan, Xu;Jianjun, Chen
    • Structural Engineering and Mechanics
    • /
    • v.29 no.5
    • /
    • pp.489-504
    • /
    • 2008
  • In piezoelectric flexible structures, the contribution of vibration modes to the dynamic response of system may change with the location of piezoelectric actuator patches, which means that the ability of actuators to control vibration modes should be taken into account in the development of modal reduction model. The spatial $H_2$ norm of modes, which serves as a measure of the intensity of modes to system dynamical response, is used to pick up the modes included in the reduction model. Based on the reduction model, the paper develops the state-space representation for uncertain flexible tructures with piezoelectric material as non-collocated actuators/sensors in the modal space, taking into account uncertainties due to modal parameters variation and unmodeled residual modes. In order to suppress the vibration of the structure, a dynamic output feedback control law is designed by imultaneously considering the conflicting performance specifications, such as robust stability, transient response requirement, disturbance rejection, actuator saturation constraints. Based on linear matrix inequality, the vibration control design is converted into a linear convex optimization problem. The simulation results show how the influence of vibration modes on the dynamical response of structure varies with the location of piezoelectric actuators, why the uncertainties should be considered in the reductiom model to avoid exciting high-frequency modes in the non-collcated vibration control, and the possiblity that the conflicting performance specifications are dealt with simultaneously.

Production and Remanufacturing Planning under Uncertain Supply of Recovery Cores and a Disassemble-to-order Environment (재생품 공급량이 불확실한 주문시분해 환경에서의 생산 및 재제조 계획)

  • Kang, Changmuk
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.38 no.2
    • /
    • pp.43-63
    • /
    • 2013
  • Remanufacturing is a process of recovering end-of-life products into serviceable parts for producing new products. Due to the limited supply of recovery cores to remanufacture, a remanufacturing firm also needs to produce or procure new parts for fulfilling the demand. This paper is targeted for solving the problem of determining the optimal amount of newly produced and remanufacturing parts, which is called production and remanufacturing planning (PRP) problem, under uncertain supply of recovery cores. The new production mitigates the risk of insufficient core supply while it takes more costs than the remanufacturing. The PRP model in this paper also considers disassemble-to-order (DTO) environment, in which multiple kinds of parts are remanufactured from multiple products on order of the parts. Whereas existing studies presents only heuristic solutions for DTO remanufacturing, this paper provides an exact solution for this problem and analytical sensitivity of the involved cost parameters, adopting multi-dimensional newsvendor modeling and stochastic linear programming techniques. The result shows that production and remanufacturing plans for multiple products are mutually dependent, and a change of cost parameters involved in only one part is propagated to all other parts.

Stochastic dynamic instability response of piezoelectric functionally graded beams supported by elastic foundation

  • Shegokara, Niranjan L.;Lal, Achchhe
    • Advances in aircraft and spacecraft science
    • /
    • v.3 no.4
    • /
    • pp.471-502
    • /
    • 2016
  • This paper presents the dynamic instability analysis of un-damped elastically supported piezoelectric functionally graded (FG) beams subjected to in-plane static and dynamic periodic thermomechanical loadings with uncertain system properties. The elastic foundation model is assumed as one parameter Pasternak foundation with Winkler cubic nonlinearity. The piezoelectric FG beam is subjected to non-uniform temperature distribution with temperature dependent material properties. The Young's modulus and Poison's ratio of ceramic, metal and piezoelectric, density of respective ceramic and metal, volume fraction exponent and foundation parameters are taken as uncertain system properties. The basic nonlinear formulation of the beam is based on higher order shear deformation theory (HSDT) with von-Karman strain kinematics. The governing deterministic static and dynamic random instability equation and regions is solved by Bolotin's approach with Newmark's time integration method combined with first order perturbation technique (FOPT). Typical numerical results in terms of the mean and standard deviation of dynamic instability analysis are presented to examine the effect of slenderness ratios, volume fraction exponents, foundation parameters, amplitude ratios, temperature increments and position of piezoelectric layers by changing the random system properties. The correctness of the present stochastic model is examined by comparing the results with direct Monte Caro simulation (MCS).