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On-Line Parameter Estimation Scheme
for Uncertain Takagi-Sugeno Fuzzy Models

Young-Wan Cho and Chang-Woo Park*

Abstract: In this paper, an estimator with an appropriate adaptive law for updating parame-
ters is designed and analyzed based on the Lyapunov theory. The adaptive law is designed so
that the estimation model follows the parameterized plant model. Using the proposed estima-
tor, the parameters of the T-S fuzzy model can be estimated by observing the behavior of the
system and it can be a basis for indirect adaptive fuzzy control.
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1. INTRODUCTION

The adaptive fuzzy controllers are divided into two
classes [1]. One is called the direct adaptive fuzzy
control and the other is called the indirect adaptive
fuzzy control. In the case of the direct adaptive fuzzy

control, we view the fuzzy logic systems as controllers.

However, in the case of the indirect adaptive fuzzy
control, the fuzzy logic systems are used to model the
plant. The controller is then constructed assuming that
the fuzzy logic systems approximately represent the
true plant. The appropriate adaptive law plays an
important role in estimating the parameters in the
fuzzy model representing the plant model, whose
parameters are unknown or vary in accordance with
external disturbances and parameter perturbation.
Hence, the parameter estimation for the fuzzy model
is essential to the indirect adaptive fuzzy control
design. Hitherto, various researches on the parameter
estimation of the fuzzy system from the input-output
measurements have been conducted. Pedrycz
previously suggested the estimation algorithm of the
fuzzy relational model [2]. Sugeno proposed the
parameter estimation of the so-called Takagi-Sugeno
(T-S) fuzzy system [3, 4] and other researchers also
participated in the estimation of the T-S fuzzy system
[5]. Sugeno and Yasukawa reported qualitative
modeling of a fuzzy system in [6] and some
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researchers attempted to estimate the fuzzy system via
neural-network-based approaches [7, §].

However, most of these are off-line algorithms and
cannot be applied to situations where real-time
processing is required such as adaptive control and
signal processing. Even though the successive
adaptive fuzzy modeling was suggested in [9], it
cannot be viewed as an on-line algorithm in an actual
sense since it requires an off-line learning phase
before being adapted on-line. Furthermore, most of
the on-line parameter estimation schemes proposed in
the indirect adaptive fuzzy control [10-15] can only be
applied to the specified fuzzy controllers, mainly
feedback linearization based controllers. Hence, a
parameter estimation scheme applicable to the general
fuzzy models and controllers is needed.

To avoid these problems, this paper presents a new
design and an analysis of the on-line parameter
estimator for the plant model whose structure is
represented by the general T-S fuzzy models.

2. T-S FUZZY MODELS AND PARAMETER
ESTIMATION

As an expression model of an actual plant, we use
the fuzzy implications and the fuzzy reasoning
methods suggested by Takagi and Sugeno [3]. The set
of fuzzy implications shown in the Takagi and Sugeno
(T-S) model can express a highly nonlinear functional
relation in spite of a small number of fuzzy
implication rules. As a descriptive rule the T-S fuzzy
model uses fuzzy implication of the following form:

Ri:]j‘xl(t) is M{ and --- and x,(t) is M;,
then  x(t) = Ax(t)+ Bu(t), )

where R'(i=1,2,---,I) denotes the i th
implication, / is the number of fuzzy implications,
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M} are fuzzy sets and x’ ) =[x,(t), Xy (@), s

O’ () =[1(©), uy(), -+, 1, (0)].

The T-S fuzzy model approximates a nonlinear
system with a combination of several linear systems.
The overall T-S fuzzy model is formed by fuzzy
partitioning of the input space. The premise of a fuzzy
implication indicates a fuzzy subspace of the input
space and each consequent expresses a local input-
output relation in the subspace corresponding to the
premise part.

Given a pair of inputs ( x(¢), u(¢) ), the final output

of the fuzzy system is inferred as follows:

I
Z w, (x(1)){4; x(t) + By u(t)}
(1) = 1 : @)
> i (x(1))

i=1

where Wi(x(’)):l_[]M}(xj(t)), M}(xj(t)) is the
=

grade of membership of  x;(f) in M’, and it is

/

assumed that Zl wi(x(1)) > 0, w;(x(2)) = 0 , for
I=

i=1,2,.,1

To develop the parameter estimator for the T-S
fuzzy modeled plant, we start with the plant
parameterization as

4
Zwi(x){Ai X+ Bu+Ax— AXx}
i=t

X =
n
Z w;(x)
i=1
n 3)
Zw[-(x)( (4, — Ay)x+B;w)
=A4.x + =L ,
b n
Z w;(x)
i=1
where 4. is an arbitrary stable matrix, i.e., having

all its eigenvalues in the left half plane.
Now, we define the estimation model as

3w (0~ A)x + B )

x=A %+ . @)
ZW,'(X)
i=1
where  A.(r), B,(r) are the estimates of

A:(t), B;(¢r)attime ¢ to be generated by an adaptive

law, and  %(¢) € R"is the estimate of the vector X(7).

By defining the estimation error vector ¢ as
E=x—X

we obtain

E=X-X

g XA D mB (5)
PR ZW

where z:iiEzzl,-—Ai, f)’iséi—Bi.

Let us now consider the series-parallel model
design and use (5) to derive the adaptive law for
estimating the elements of 4;, B;. We assume that
the adaptive law has the general structure

(6)

where F and G,;(i=1,..-,] ) are functions of

known signals that are to be chosen so that the
equilibrium

’aie:Ai’éie:Bi’geZO (7)

of (5), (6) has some desired stability properties. By
choosing the following function as the Lyapunov

function candidate,
, arpi i
V(e,4,B)=¢ P5+Ztr( 'r Z
i=1 i i=1

PB
N
where #r(A4) denotes the trace of a matrix 4, #;,

and P=p' >0 is
chosen as the solution of the Lyapunov equation

r; >0 are constant scalars,

ATP+ P4, =1 (8)

whose existence is guaranteed by the stability
assumption of 4.

we obtain the time derivative V of J along the
trajectory of (5), (6), which is given by

N APA APA

V= €TP8+8TP£+ZII’( 1)
i=1 Hi 4t
N B PB; BTPB ©
+er( — 1y,
B Py
where
& Pere Pi= & (A P+PA)e— 2 pZMA o p 2B
P W

and
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T
PA A PA A PF;
fr( ) =2tr(— )
hi ii hi
BT PB, BTPB B! PG,
r( ) =2tr(——)
P ni P
Therefore,

V= —5T5—25TPZ ’A' TPZ B’
S ZW

+Zzzr( ’ ’)+22t(

By using the following properties of trace to
manipulate (10):
(i) tr(AB)=1tr(BA)

(i) #r(4+B)=tr(A)+1tr(B) forany 4,BeR™"

(iii) tr(yxT) = xTy forany x,ye R™!.

After some straightforward manipulation on (10)
using the properties of trace given in the above, we
have

AT PF, Zw AT

Ay Zw

V=—-¢ g+2tr(z

=T =T (1)
B; PG; W'B,'
+ Z L L Z ! PguT).
P sz‘
The obvious choice for F;,G; to make
V negative is
v 4 ATPR_ 2w AT o
i ZW
ZEI.TPG ZWB o7
;i ZW
That is,
P w; T
A=F=nw—¢&x,
] i i Zwi (123)
A w; T
B =G =n,=—s&u .
i i zwi (12b)

The signals for driving the adaptation law (12a) and
(12b) of the parameter estimator are known or
available for measurement. Therefore, the estimation
law for the estimation model (4) can be implemented.
The overall estimation scheme is shown in Fig. 1.

We establish the following theorem, which shows
the properties of the adaptive law (12).

Theorem 1: Consider the plant model (2) and the

‘e Za),.(A,.x+ Bu) X
o .

— f T-S Plant Model

i 2l axe Bl X

m
2.

Estimation Model

y w; r Y

4 :yliz_a)i‘glx

B =yy——su’

i =72 &
>

Adaptive Law

Fig. 1. T-8S fuzzy model parameter estimator.

estimation model (4) with the estimation law (12).
Assume uef, . and then, the adaptive law (12)

guarantees that | &(t) l =0 as t >»® and

A@|=0

, é,(t)“—)O as t—o

Proof: From the adaptive law (12), it directly
follows that the time derivative ¥ of V' along the
solution trajectory of (5), (6) satisfies

V=—-¢ <0 (13)

Since the function }~ is a Lyapunov function for
the system (5), (6) where x and u are treated as
independent bounded functions of time, and ,¥ <0
we conclude that the equilibrium given by (7) is
uniformly stable, which implies that the trajectory
(), A,(t), B;(t) isbounded forall 1>0.

Because ¢=x-%x and xe £« , we also have

x € £ . Therefore, all signals in (5) and (6) are
uniformly bounded.
From (8) and (13), we conclude that because J is

bounded from below and it has a limit, i.e.,
lim V(e(0), 4(0), B (1) = V.o <0 (14)
From (13) and (14), it follows that

[e"edr=—[Var = -V.,) (15)
O *

0

where V, =V (£(0), 4:(0), B;(0)) which implies that



International Journal of Control, Automation, and Systems Vol. 2, No. 1, March 2004 71

~

g€ £,. Because 0<w;(x)<1, and w, 4,5 ,%,
g€ £, it follows from (5) that €€ £, which,
together with &€ £ 2, implies that £—0 as

{ —» o , which, in turn, implies that 4(t), B,(t) >0
as t—oo.

3. ADAPTIVE FUZZY CONTROL DESIGN

In the previous section, we have presented an on-
line parameter estimation for the general T-S fuzzy
models. Based on the analysis, in this section, we
adopt the proposed estimator with the existing fuzzy
state feedback controller, and an indirect adaptive
fuzzy controller for the given unknown T-S fuzzy
modeled plant is designed.

3.1. Indirect adaptive fuzzy state feedback control
structure
Consider the fuzzy model representing a nonlinear
SISO system with the following form of fuzzy rules.
i-th plant rule:

IF xis M and % is M} and -+~ and x'""V is M
THENx(”)za,T-x+biu or Xx=Ax+Bu
i=1,2,.1

(16)

where, state x' =[x X2 ... 5] =[X X s> %]

and input y e R' are available for measurement,

a =[d,,ab . a1, b eR (i=1, 1) are

P R ,
unknown, and #€£f«, Wf(x)zHM}(x) . M}is
j=1

the fuzzy set and | is the numbef of fuzzy rules and

@ dy g df)
0 0 O
4=10 1 0 0 B; =
10 0 1 0]

The T-S fuzzy rules can be inferred as

!
Z wi(x){a,-T “X+bu}

x(n) _ =l

i=l

or equivalently,

Z w; (X)
i=l

/
= h(x){a] x+bu)

(17a)

; 1 0 00 ’
dm®i0 1 - 0 Olxt|. |u
i=1 . . . . :
0
_ 0 0 1 0] (17b)
x= ;
D m(x)
=
w; (x)

where w;(x) = H M;; (X(jﬂl)) , B (x) =— .
- zWi(X)
i=1

We adopt the fuzzy state feedback controller shown
in Theorem 2 to stabilize (17).

Theorem 2 [18]: If we choose the following
controller for the plant represented by T-S fuzzy
model (17),

-
adT -x—Zhl-(x) a,-T X

i=l

‘Zhi(x)b,-
i=1

U=

r (18)
Zhi(x)(adT - aiT) X

i=1

Zr:hi(x)bi

i=1
b; and h;(x) with the

fuzzy model (16) for all ; , and a; €R” is chosen
such that the exact linearized system (19)

XM =a,l x (19)

where we use the same a;,

is asymptotically stable.
Then the given nonlinear fuzzy system is
transformed into the desired linear system as in (19).

Proof: Refer to [18].
However, the parameter vectors, a; and b; are

unknown and then, they are tuned by #;,and 5; via
the proposed estimation methods as follows.

Zr:hi(x)(ad - ﬁi)T X
U=t —— (20)
> (b,

i=1

By considering the plant parameterization
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6 =x,
m/_\
& = x,
21

Fig. 2. The inverted pendulum system.

]
Zwi(x)((Ai—As)erB,-u)
X=A,x+2

] (21)
Z w;(x)
i=1
and A is a stable matrix.
We define the estimation model as
i
2w (40— A)x+ B (1))

/
Z w;(x)
i=1

By following the estimator design methods, we can
derive an adaptive law shown in Lemma 1 to make the
estimation error g=x-—% be zero and with the

adaptive law; the estimation model (22) can be the

same as (23) by adopting the control input (20) to (22).

X =a, x (23)

Lemma 1: Consider the plant model (21) and the

estimation model (22). Assume that ¥ € £, and
then, the following adaptive law (24),
al =4’ —fl.T =A;

Wi T T
=a; = S préax, (24a)

1

~ A w;

bj=b =g =”2i—lP1T51 u,
W

where P; is the first column of p guarantees that

|81(t)[—>0 as t—>wo (25a)

(24b)

and
(25b)

aw|-o,

13,.(t)H—>0 as t—> o

Proof: The proofis given in Appendix A.

3.2. Control simulations

{RuleZ \

-90 0 x1
Fig. 3. Membership functions.

90[deg.]

Consider the problem of balancing an inverted
pendulum on a cart shown in Fig. 2. The equations of
motion for the pendulum are

X =X
X = f(X)+g(x)+d() (26)
_ g sin(x) - armlx22 (2x)/2—a cos(x) Ju
- 4l/3—amlc0s2(x1)

+d(1),

where X =[x xz]T in which x; denotes the angle
(in radians) of the pendulum from the vertical and x;
is the angular velocity. g=9.8m/ s? is the gravity

constant, # is the mass of the pendulum, M is the
mass of the cart, 2/ is the length of the pendulum,

u is the control force applied to the cart (in Newtons).

1
d(t) is the external disturbance and 9= 5. We
choose m=2.0kg, M=80kg and 2/=10m in

the simulation.

The dynamic equations (26) can be approximated
by the following two fuzzy rules [19] and the
membership functions used in this fuzzy model are
shown in Fig. 3.

Rule 1:IF x is about 0
THEN %=al -x+b u

Rule 2:IF x is about i%( |x| <%) 27)
THEN %=al -x+by u

(27) can be inferred as

2
> wi(x)a] x+bu}

om _ izl

2r
;, w;(x) (28)

=Zr:h,-(x){ al ‘x+bu},

i=1

2
where wi(0)=[]M;Y™), n(x)= _wix)

2 P
/= Z w; (x)
i=1
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Fig. 4. Plant parameter variation.

and ,
al{o L}:[o 17.29],
4//3 —aml
a, =0 28 -0 935],
w(4l/3—amlf*)
hy=-— = _0.1765,
47/3 — aml
by=-—2F 90052,
41/3 —amlp
£ = cos 88°.

We construct the control effort as

2
> hi(x)(ag —4,)" -x
e (29)
Zhi(x)bi
i=1

where ag=1[-1-1].

Table 1. Variation of plant parameters

Variation of plant parameters
CASE Osl‘gsiall:0,(112:17.29,021:0,

! ay, =9.35,b, = —0.1765 ,b, = —0.0052

CASE OS’SI.S:all=0,a12=17.29,a21=0,
2 | 4y, =9.35,h =—0.1765 b, = —0.0052
1.5St£5:a” =0.1 » a1 =18,Cl21 =0.1,
ay, =10.2,b =~0.2 b, =—0.007
CASE 1
80‘\ x1=15
70i x1=30
; x1=45
; x1=60
60 x1=80
501
3 40
&
20
10
0
0 1 2 3 4 5 6
time (sec)

Fig. 5. Simulation result of design example (CASE1).

20

T —x1
1o} 7SN —-x2 ||

70 L L L " L . . L L
0 05 1 15 2 25 3 35 4 45 5

Fig. 6. Simulation result of design example (CASE1).

The plant parameters 4;, l;l- are adjusted on-line by
adaptive law (24) where the adaptation rates #; =30,

and #; =0.5 are used and P :[ 0.1562 0-1250]T ,

the column of the positive definite matrix P is
obtained by solving the Lyapunov equation (8) with

4= -4 —4
stable matrix, 5 7| 0 |-
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— x1
AN —-x2

70 . L L L L 2 . L L
] a5 1 15 2 25 3 35 4 4.5 5

Fig. 7. Simulation result of design example (CASE2).

4. CONCLUSIONS

The adaptive law adjusting the parameters of the T-
S fuzzy models has been formulated based on the
Lyapunov theory so that the parameter estimation was
guaranteed. Hence, it can be used in cases where the
plant parameters in the T-S fuzzy model are uncertain.

APPENDIX

Since the estimation for the controllable canonical
form (16) of T-S fuzzy models is a special case of the
general T-S fuzzy model estimation given in section 2,
by following the similar procedure, we can easily
derive the adaptive law (24).

The estimation error vector £ defined as

£=x—X

satisfies

A

£=X-X

Swla 0 - o]
=A,e— ZW,- X (30)

where Q?EQT aT, biEbi—bi.

Let us choose the following function as a Lyapunov
function candidate

= lb~2

a i
V(glsala 1) 81 Pgl +Z Z_ (31)

=1 N i=1 1217

where 1;, r; >O0are constants, and P=p7 >0 is
chosen as the solution of the Lyapunov equation
ATP+PA =1
After some straightforward manipulation, we obtain
the time derivative of 1 as (32).

Zw-
32)
2 wib; ala bb (
-2 p gu+) 24—~ 2
Z t 121: Hi Z

where P; is the first column of P.
The obvious choice to make J negative is

ﬁT AT _fT

=3 =r i ple x
i_ i_ i - lsz 1<l
1

~ ~

w; T
b=b=g =hi=—M&au
Zw,.

(33a)

(33b)

By following the procedure similar to that of the
proof of Theorem 1, we can easily prove (25) using
Barbalat's lemma [20].
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