• Title/Summary/Keyword: Ultrasound phantom

Search Result 111, Processing Time 0.024 seconds

The study on Development and characteristic of ultrasound biopsy training phantom of breast (유방 초음파 팬텀의 제작과 특성에 관한 연구)

  • Ma, Sang-Chull;Kong, Young-Kun;Ahn, Young-Man
    • Journal of radiological science and technology
    • /
    • v.26 no.3
    • /
    • pp.19-24
    • /
    • 2003
  • We carried out studies on development and characteristic of ultrasound brast training biopsy phantom. the major finding were of follow ; (1) C type TMM was shown good homogeneity, brightness and attenuation as like human soft tissue. (2) $TiO_2$ 4.10%w/v TMM was shown good homogeneous echo texture and propagated speed as like the human Tissue. (3) $TiO_2$ type TMM was appeared lower brightness and higher penetration rate than C type TMM. Therefor, Breast TM phantom and target material TMM will be useful $TiO_2$ 4.10 %w/v TMM and C 2.09 %w/v TMM.

  • PDF

Measurement of Prostate Phantom Volume Using Three-Dimensional Medical Imaging Modalities (3차원 의료영상진단기기를 이용한 가상 전립선 용적 측정)

  • Seoung, Youl-Hun;Joo, Yong-Hyun;Choe, Bo-Young
    • Journal of Biomedical Engineering Research
    • /
    • v.31 no.4
    • /
    • pp.285-291
    • /
    • 2010
  • Recently, advance on various modalities of diagnosing, prostate volume estimation became possible not only by the existing two-dimension medical images data but also by the three-dimensional medical images data. In this study, magnetic resonance image (MRI), computer tomography (CT) and ultrasound (US) were employed to evaluate prostate phantom volume measurements for estimation, comparison and analysis. For the prostate phantoms aimed at estimating the volume, total of 17 models were developed by using devils-tongue jelly and changing each of the 5ml of capacity from 20ml to 100ml. For the volume estimation through 2D US, the calculation of the diameter with C9-5Mhz transducer was conducted by ellipsoid formula. For the volume estimation through 3D US, the Qlab software (Philips Medical) was used to calculate the volume data estimated by 3D9-3Mhz transducer. Moreover, the images by 16 channels CT and 1.5 Tesla MRI were added by the method of continuous cross-section addition and each of imaginary prostate model's volume was yielded. In the statistical analysis for comparing the availability of volume estimation, the correlation coefficient (r) was more than 0.9 for all indicating that there were highly correlated, and there were not statistically significant difference between each of the correlation coefficient (p=0.001). Therefore, the estimation of prostate phantom volume using three-dimensional modalities of diagnosing was quite closed to the actual estimation.

Feasibility for Ultrasound Pad Material for the Evaluation Axillary Region of Automated Breast Ultrasound Equipment (자동유방초음파 장비의 액와부 평가를 위한 초음파 패드 물질의 타당성)

  • Seo, Eun-Hee;Seoung, Youl-Hun
    • Journal of radiological science and technology
    • /
    • v.41 no.3
    • /
    • pp.231-240
    • /
    • 2018
  • Automated breast ultrasound (ABUS) equipment is a new innovative technique for 3D automatic breast scanning, but limited for the examination in the concave axillary region. The purpose of this study was to determine feasible candidate materials for the ultrasonic wave propagation media in ABUS, enabling the evaluation of the axillary region. Ultrasonography was performed using an ABUS system ($Invenia^{TM}ABUS$, GE, USA) on the ultrasound-specific phantom (UC-551M-0.5, ATS Laboratories, USA) covered by different candidate materials. The validity of feasible candidate materials was evaluated by image quality. Three independent radiological technologists, with more than 10 years of experience, visually assessed on the images. The inter-observer agreements according to the candidate materials were tested using Cronbach's alpha. Unenveloped solidified carrageenan can be a feasible material for the use of ABUS with excellent test reliability. Therefore, the coverage of the axillary region with carrageenan may be effective for ABUS which was originally developed for the convex anatomic structure as female breast.

Robust Ultrasound Multigate Blood Volume Flow Estimation

  • Zhang, Yi;Li, Jinkai;Liu, Xin;Liu, Dong Chyuan
    • Journal of Information Processing Systems
    • /
    • v.15 no.4
    • /
    • pp.820-832
    • /
    • 2019
  • Estimation of accurate blood volume flow in ultrasound Doppler blood flow spectrograms is extremely important for clinical diagnostic purposes. Blood volume flow measurements require the assessment of both the velocity distribution and the cross-sectional area of the vessel. Unfortunately, the existing volume flow estimation algorithms by ultrasound lack the velocity space distribution information in cross-sections of a vessel and have the problems of low accuracy and poor stability. In this paper, a new robust ultrasound volume flow estimation method based on multigate (RMG) is proposed and the multigate technology provides detail information on the local velocity distribution. In this method, an accurate double iterative flow velocity estimation algorithm (DIV) is used to estimate the mean velocity and it has been tested on in vivo data from carotid. The results from experiments indicate a mean standard deviation of less than 6% in flow velocities when estimated for a range of SNR levels. The RMG method is validated in a custom-designed experimental setup, Doppler phantom and imitation blood flow control system. In vitro experimental results show that the mean error of the RMG algorithm is 4.81%. Low errors in blood volume flow estimation make the prospect of using the RMG algorithm for real-time blood volume flow estimation possible.

Usefulness of Median Modified Wiener Filter Algorithm for Noise Reduction in Liver Cirrhosis Ultrasound Image (간경변 초음파 영상에서의 노이즈 제거를 위한 Median Modified Wiener Filter 알고리즘의 유용성)

  • Seung-Yeon Kim;Soo-Min Kang;Youngjin Lee
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.6
    • /
    • pp.911-917
    • /
    • 2023
  • The method of observing nodular changes on the liver surface using clinical ultrasonography is useful for diagnosing cirrhosis. However, the speckle noise that inevitably occurs in ultrasound images makes it difficult to identify changes in the liver surface and echo patterns, which has a negative impact on the diagnosis of cirrhosis. The purpose of this study is to model the median modified Wiener filter (MMWF), which can efficiently reduce noise in cirrhotic ultrasound images, and confirm its applicability. Ultrasound images were acquired using an ACR phantom and an actual cirrhotic patient, and the proposed MMWF algorithm and conventional noise reduction algorithm were applied to each image. Coefficient of variation (COV) and edge rise distance (ERD) were used as quantitative image quality evaluation factors for the acquired ultrasound images. We confirmed that the MMWF algorithm improved both COV and ERD values compared to the conventional noise reduction algorithm in both ACR phantom and real ultrasound images of cirrhotic patients. In conclusion, the proposed MMWF algorithm is expected to contribute to improving the diagnosis rate of cirrhosis patients by reducing the noise level and improving spatial resolution at the same time.

Improvement of Ultrasound Images Using Motion Estimation and Recursive Filtering (Motion Estimation과 Recursive Filtering을 사용한 초음파 동화상의 개선)

  • Song, J.S.;Lee, J.K.;Yang, Y.J.;Choi, H.J.;Oh, C.H.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1995 no.05
    • /
    • pp.123-126
    • /
    • 1995
  • The purpose of this paper is to improve ultrasound images using motion estimation and recursive filtering. Although averaging without motion correction can make image blurring, the proposed estimation method improves image SNR without motion blurring by recursively averaging images with motion correction. Computer simulation on the proposed method has been performed to improve phantom and ultrasound fish images and the results show the utility of the proposed method.

  • PDF

A Study on the Quality Control of Transvaginal Ultrasound Transducer using ATS-539 Ultrasound Phantom (ATS-539 초음파 팬텀을 이용한 경질 초음파 검사용 탐촉자의 정도관리에 대한 연구)

  • Park, Ji Hye;Heo, Yeong Cheol;Kim, Yon min;Han, Dong Kyoon
    • Journal of the Korean Society of Radiology
    • /
    • v.15 no.4
    • /
    • pp.463-472
    • /
    • 2021
  • Demand for examinations using transvaginal transducer with high frequencies is increasing to observe pelvic organs in gynecological ultrasound tests. However, the quality control of the replacement probe in clinical trials is not properly implemented and the evaluation criteria have not been established. Therefore, 58 transvaginal transducers and 20 convex transducers were applied to the ATS-539 ultrasound phantom for 20 ultrasound devices currently in clinical use to obtain their respective images and measure them quantitatively and qualitatively. For quantitative measurements, vertical measurement, horizontal measurement, and focal zone and qualitative measurements, dead zone, axial·lateral resolution, sensitivity, functional resolution, gray scale·dynamic range were performed. Quantitative statistical analysis showed significant differences between the two transducers in the lateral measurement and local area (p<0.05). qualitative comparative analysis showed differences in sensitivity and functional resolution. This occurs due to the difference in frequency between transducers and the transducer's injection geometry. Based on the above experiments, the tolerance for horizontal measurement is raised to 10% (±8 mm), the tolerance for sensitivity is observed up to 6 cm deep, which is 12 cm deep,which is the level of the third quartile (75%). The permissible range of functional resolution is up to 6 (12 cm), 6 (12 cm), 11 (11 cm), 9 (9 cm), 6 (6 cm) target, which is the level of the third quartile (75%). It is considered reasonable to adjust the depth of targets in gray scale·dynamic range to measure at a depth of 2 cm, which is 50% of the depth of 4 cm. As above, the criteria for evaluating the quality of transvaginal transducer for use in the past have been proposed and it is expected that this study will be used as a basic data for the production of phantom exclusively for transvaginal transducer in the future.

An Analysis of Temperature Change and TI MI using Tissue Mimicking Phantom in Ultrasonic Examination (초음파검사에서 인체모의 매질팬텀을 이용한 온도 변화와 TI MI 분석)

  • Cheol-Min, Jeon;Jae-Bok, Han;Jong-Gil ,Kwak;Jong-Nam, Song
    • Journal of the Korean Society of Radiology
    • /
    • v.16 no.6
    • /
    • pp.751-759
    • /
    • 2022
  • Currently, ultrasound examination for diagnostic ultrasound and health examination purposes is widely used, and it is showing an increasing trend due to the application of health insurance. However, the risk of ultrasound has not been clearly identified so far, and in this study, surface and deep temperature changes according to frequency and mode were measured by using a tissue mimicking phantom and TI and MI values were compared. A simulated phantom was manufactured by adding a small amount of kappa-caraginan powder with acoustic characteristics similar to that of the human body and potassium chloride for solidification, and the change of surface and depth temperature was measured using a surface thermometer and a probe thermometer. As a result, the convex probe using low frequency showed a higher temperature increase than the linear probe using high frequency, so there was a significant difference, and the temperature increase was the highest on the surface, and the depth of 1cm showed a temporary temperature increase, but there was no significant temperature change. There was no change in the deep temperature of 5 cm to 15 cm, and the TI and MI values did not change during the test time. Since only the surface temperature rose during the 15-minute test and there was no temperature change in the core, so it is not expected to show a temperature change that is harmful to the human body. However, it is thought that prolonged examination of one area may cause temperature rise, so it should be avoided.

Evaluation of Image Quality using ATS-539 Phantom and SNR in the Ultrasonographic Equipment (ATS-539 다목적 팬텀과 SNR을 이용한 초음파 영상평가)

  • Kim, Min-Ju;Lee, Jin-Soo;Ko, Seong-Jin;Kang, Se-Sik;Kim, Jung-Hoon;Kim, Dong-Hyun;Kim, Changsoo
    • The Journal of the Korea Contents Association
    • /
    • v.13 no.8
    • /
    • pp.284-291
    • /
    • 2013
  • The importance of ultrasound examination in the field of medical imaging has been emphasized and the interest in sonographic image evaluation is growing. However image evaluations by the non-standardized criteria and methods, so establishment of legal provisions and objective evaluation criteria are needed. In this study, we used SNR to find out more quantitative way and supplement the limitations of the existing phantom image evaluation. The results of acquired 8 images using ATS-539 multipurpose phantom were compared in SNR of sensitivity and gray-scale dynamic range. In the result of the experiment, excellent equipment of existing phantom images are G1, S1 and G2 in regular sequence. In SNR of sensitivity, G1, S1 and G2 and in SNR of gray-scale dynamic range, S1 G1 and G2 in order. In the conclusion, all the experiment results did not show big difference and regular pattern neither. Therefore, the new evaluation measures should be used with the existing phantom image evaluation method for more objective and quantitative evaluation of the ultrasound imaging device.

Diagnosis of Micro-Calcified Lesions of Breast Tissue Phantoms Using Acoustic Resonance Coupled with Power Doppler (공명현상과 파워도플러를 이용한 유방조직 팬텀의 미세 석회화 병변 진단)

  • Kim, Jeong-Koo;Ha, Myeung-Jin
    • The Journal of the Acoustical Society of Korea
    • /
    • v.27 no.2
    • /
    • pp.80-86
    • /
    • 2008
  • Breast ultrasound has many advantages over mammography but suffers from a shortcoming of being not suitable in detecting microcalcification. We studied on a method based on acoustic resonance and power Doppler to detect calcification of breast tissue using a typical 7.5 MHz linear probe used in breast ultrasound examination. We first constructed a breast tissue phantom made of gelatin and then observed calcified legions as external vibrations varied. Calcification injected to the breast tissue phantom being resonated different from the surrounding medium, and its acoustic resonance driven by external vibrations was visualized by differences for color brightness and area in ROI of power doppler. In low frequency regions, the acoustic resonance almost not appeared and showed a plateau in $300{\sim}600\;Hz$ and the color vanished as the frequency further increased.