• Title/Summary/Keyword: Ultrasonic Signal Processing

Search Result 176, Processing Time 0.027 seconds

Study on the Development of Multi-Path Ultrasonic Gas Flowmeter (전달 시간차 방식 다회선 초음파 가스 유량계 개발)

  • 황원호;박상국;이치환;장경영
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1046-1050
    • /
    • 2003
  • In this paper, we describe study on the development or multi-path ultrasonic gas flowmeter using a transit time method. This system includes 5 pairs of ultrasonic transducers. ultrasonic signal processing unit using switch matrix method, computation algorithm of gas flow rate, spool piece type multi-path pipe unit. We have developed enhanced type of main ultrasonic signal processing unit using switch matrix method fer multi-path ultrasonic gas flowmeter. Also, we have developed the new transmitting & receiving method of ultrasonic waves and the new signal processing algorithm for the computation of ultrasonic transit time from received ultrasonic waves. In this study, we have designed more compact signal processing unit compared with the conventional hardware system of multi-path ultrasonic gas flowmeter. We have confirmed its reliability for multi-path ultrasonic gas flowmeter through the laboratory test using calibration system. In the future. we will perform the field test for the developed system in the POSCO gas line.

  • PDF

Ultrasonic Inspection of Cracks in Stud Bolts of Reactor Vessels in Nuclear Power Plants by Signal Processing of Differential Operation

  • Choi, Sang-Woo;Lee, Joon-Hyun;Oh, Won-Deok
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.25 no.6
    • /
    • pp.439-445
    • /
    • 2005
  • The stud bolt is one of crucial parts for safe operation of reactor vessels in nuclear power plants, Crack initiation and propagation were reported in stud bolts that arc used for closure of reactor vessel and head, Stud bolts are inspected by ultrasonic technique during overhaul periodically for the prevention of stud bolt failure which could induce radioactive leakage from nuclear reactor, In conventional ultrasonic testing for inspection of stud bolts, cracks are detected by using shadow effect It takes too much time to inspect stud bolts by using conventional ultrasonic technique. In addition, there were numerous spurious signals reflected from every oblique surfaces of thread, In this study, the signal processing technique for enhancing conventional ultrasonic technique was introduced for inspecting stud bolts. The signal processing technique provides removing spurious signal reflected from every oblique surfaces of thread and enhances detectability of defects. Detectability for small crack was enhanced by using this signal processing in ultrasonic inspection of stud bolts in Nuclear Power Plants.

FPGA-based design and implementation of data acquisition and real-time processing for laser ultrasound propagation

  • Abbas, Syed Haider;Lee, Jung-Ryul;Kim, Zaeill
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.17 no.4
    • /
    • pp.467-475
    • /
    • 2016
  • Ultrasonic propagation imaging (UPI) has shown great potential for detection of impairments in complex structures and can be used in wide range of non-destructive evaluation and structural health monitoring applications. The software implementation of such algorithms showed a tendency in time-consumption with increment in scan area because the processor shares its resources with a number of programs running at the same time. This issue was addressed by using field programmable gate arrays (FPGA) that is a dedicated processing solution and used for high speed signal processing algorithms. For this purpose, we need an independent and flexible block of logic which can be used with continuously evolvable hardware based on FPGA. In this paper, we developed an FPGA-based ultrasonic propagation imaging system, where FPGA functions for both data acquisition system and real-time ultrasonic signal processing. The developed UPI system using FPGA board provides better cost-effectiveness and resolution than digitizers, and much faster signal processing time than CPU which was tested using basic ultrasonic propagation algorithms such as ultrasonic wave propagation imaging and multi-directional adjacent wave subtraction. Finally, a comparison of results for processing time between a CPU-based UPI system and the novel FPGA-based system were presented to justify the objective of this research.

COMPARISON OF SIGNAL PROCESSING TECHNIQUES FOR UT-NDE ON NUCLEAR POWER PLANTS

  • Lee, Young-Seock;Kim, Se-Dong
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.359-364
    • /
    • 2004
  • This paper deals with the comparison of signal processing techniques of ultrasonic data. The goal of signal processing is the ultrasonic speckle suppression and the visibility enhancement of flaw-reflected ultrasonic echo. The performance of conventional SSP(split spectrum processing) method and the wavelet denoising method are compared and discussed for tested ultrasonic data. Tested ultrasonic data obtained from the weld area of centrifugal-casted stainless steel material and safe-ending material with holes and notch of variable depths are presented. In experimental results, the outputs of wavelet-based denoising method show the clear and sharp peaks at the positions of flaw-reflected echos comparing with those of SSP method.

  • PDF

Wavelet Analysis of Ultrasonic Echo Waveform and Application to Nondestructive Evaluation (초음파 에코파형의 웨이브렛 변환과 비파괴평가에의 응용)

  • Park, Ik-Keun;Park, Un-Su;Ahn, Hyung-Keun;Kwun, Sook-In;Byeon, Jai-Won
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.20 no.6
    • /
    • pp.501-510
    • /
    • 2000
  • Recently, advanced signal analysis which is called "time-frequency analysis" has been used widely in nondestructive evaluation applications. Wavelet transform(WT) and Wigner Distribution are the most advanced techniques for processing signals with time-varying spectra. Wavelet analysis method is an attractive technique for evaluation of material characterization nondestructively. Wavelet transform is applied to the time-frequency analysis of ultrasonic echo waveform obtained by an ultrasonic pulse-echo technique. In this study, the feasibility of noise suppression of ultrasonic flaw signal and frequency-dependent ultrasonic group velocity and attenuation coefficient using wavelet analysis of ultrasonic echo waveform have been verified experimentally. The Gabor function is adopted the analyzing wavelet. The wavelet analysis shows that the variations of ultrasonic group velocity and attenuation coefficient due to the change of material characterization can be evaluated at each frequency. Furthermore, to assure the enhancement of detectability and naw sizing performance, both computer simulated results and experimental measurements using wavelet signal processing are used to demonstrate the effectiveness of the noise suppression of ultrasonic flaw signal obtained from austenitic stainless steel weld including EDM notch.

  • PDF

Ultrasonic Flaw Detection in Composite Materials Using SSP-MPSD Algorithm

  • Benammar, Abdessalem;Drai, Redouane
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.5
    • /
    • pp.1753-1761
    • /
    • 2014
  • Due to the inherent inhomogeneous and anisotropy nature of the composite materials, the detection of internal defects in these materials with non-destructive techniques is an important requirement both for quality checks during the production phase and in service inspection during maintenance operations. The estimation of the time-of-arrival (TOA) and/or time-of-flight (TOF) of the ultrasonic echoes is essential in ultrasonic non-destructive testing (NDT). In this paper, we used split-spectrum processing (SSP) combined with matching pursuit signal decomposition (MPSD) to develop a dedicated ultrasonic detection system. SSP algorithm is used for Signal-to-Noise Ratio (SNR) enhancement, and the MPSD algorithm is used to decompose backscattered signals into a linear expansion of chirplet echoes and estimate the chirplet parameters. Therefore, the combination of SSP and MPSD (SSP-MPSD) presents a powerful technique for ultrasonic NDT. The SSP algorithm is achieved by using Gaussian band pass filters. Then, MPSD algorithm uses the Maximum Likelihood Estimation. The good performance of the proposed method is experimentally verified using ultrasonic traces acquired from three specimens of carbon fibre reinforced polymer multi-layered composite materials (CFRP).

Determination of the Optimum-Bandwidth of Chirp-Signal for Pulse Compression Technique (펄스압축 기술을 위한 chirp 신호의 최적대역폭 결정)

  • Ko, Dae-Sik;Moon, Gun
    • The Journal of the Acoustical Society of Korea
    • /
    • v.16 no.2
    • /
    • pp.5-9
    • /
    • 1997
  • In this paper, when we use the chirp signal as input signal of ultrasonic signal system the technique for determining the bandwidth of the chirp signal that maximizes the amplitude of the compressed ultrasonic echo signal has been studied. In ultrasonic signal processing systems, the signal-to-noise ratio of the echo signal can be too low due to damping and scattering of the ultrasonic wave during transmission. Method of pulse compression using chirp signal is a means to increase the signal-to-noise ratio in ultrasonic pulse-echo systems. Simulation and experimental results showed that the output signal of ultrasonic system was increased by pulse width of chirp signal and the optimum-bandwidth of the chirp signal was 1.15 times larger than the bandwidth of the ultrasonic system.

  • PDF

Nondestructive Strength Evaluation of Adhesive-Bonded Single-Lap Joints by Signal Processing Method (신호처리기법을 이용한 단순겹치기 접착이음의 비파괴적 강도평가)

  • Jeong, Il-Hwa;O, Seung-Kyu;Hwang, Yeong-Taik;Jang, Chul-Seob;Jeong, Eui-Seob;Yi, Won
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.541-546
    • /
    • 2001
  • Application of bonding by adhesives can be found in many industries, particularly in advanced technological domains such as the aeronautical and space industries, automobile manufacture, and electronics. Periodic inspection with conventional ultrasonic NDE techniques is capable of indicating the presence and possible location of crack. Continuous ultrasonic attenuation monitoring has potential to supply information. This study used adhesive-bonded single-lap joints specimen to evaluate such possibility by ultrasonic signal processing method.

  • PDF

Design and Implementation of Flaw Image processing System for Automated Ultrasonic Testing System (자동 초음파 검사를 위한 결함 영상 처리 시스템의 설계 및 구현)

  • Kim, Han-Jong;Park, Jong-Hoon;Kim, Chul-Won
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.1
    • /
    • pp.225-232
    • /
    • 2010
  • In this study, an automated ultrasonic testing system and post signal and image processing techniques are developed in order to construct ultrasonic flaw images in weldments. Image processing algorithms are built into the flaw image processing system for the automated ultrasonic testing system. The developed signal and image analysis algorithms addressed in this study include an A-Scan data compression algorithm, ultrasonic image amplification algorithm and B-scan flaw image correction algorithm(SAFT). This flaw image processing system for the automated ultrasonic testing system can be applied to various inspection fields.

A Software Approach for the Realtime Received Signal Processing in Magnetostrictive Long-Range Ultrasonic Testing (자왜형 원거리 초음파검사에서 실시간 수신신호 처리를 위한 소프트웨어 접근)

  • Heo, Won Nyoung;Lim, Hyung Taik;Kim, Tae Gyung;Choi, Myoung Seon
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.32 no.5
    • /
    • pp.540-544
    • /
    • 2012
  • Like the phase array based ultrasonic system, complicated electronics has been used for real time signal processing in the magnetostrictive long-range ultrasonic testing(LRUT) system. This study shows that the software approach including the phase compensation, noise filtering and waveform transformation takes advantage rather than the previous hardware approach. Furthermore, it is possible for the software approach to be able more flexible and efficient realtime signal processing. These results will contribute to a cost-effective LRUT system and analysis of the inspection data.