• Title/Summary/Keyword: Ultrasonic Phantom

Search Result 57, Processing Time 0.024 seconds

Development of Ultrasound Phantom for Volume Calibration (부피 측정을 위한 초음파 팬텀 개발)

  • Kim, Hye-Young;Lee, Ji-Hae;Lee, Kyung-Ja;Suh, Hyun-Suk;Lee, Re-Na
    • Progress in Medical Physics
    • /
    • v.19 no.4
    • /
    • pp.227-230
    • /
    • 2008
  • The purpose of this study was to design and construct an ultrasound phantom for volume calibration and evaluate the volume measurement accuracy of a 2 dimensional ultrasonic system. Ultrasound phantom was designed, constructed and tested. The phantom consisted of a background material and a target. The background was made by mixing agarose gel with water. A target, made with an elastic material, was filled with water to vary its volume and shape and inserted into background material. To evaluate accuracy of a 2 dimensional ultrasonic system (128XP, ACUSON), three different shapes of targets (a sphere, 2 ellipsoids and a triangular prism) were constructed. In case of ellipsoid shape, two targets, one with same size length and width (ellipsoid 1) and another with the length 2 times longer than width (ellipsoid 2) were examined. The target volumes of each shape were varied from 94cc to 450cc and measurement accuracy was examined. The volume difference between the real and measured target of the sphere shape ranged between 6.7 and 11%. For the ellipsoid targets, the differences ranged from 9.2 to 10.5% with ellipsoid 1 and 25.7% with ellipsoid 2. The volume difference of the triangular prism target ranged between 20.8 and 35%. An easy and simple method of constructing an ultrasound phantom was introduced and it was possible to check the volume measurement accuracy of an ultrasound system.

  • PDF

An Analysis of Temperature Change and TI MI using Tissue Mimicking Phantom in Ultrasonic Examination (초음파검사에서 인체모의 매질팬텀을 이용한 온도 변화와 TI MI 분석)

  • Cheol-Min, Jeon;Jae-Bok, Han;Jong-Gil ,Kwak;Jong-Nam, Song
    • Journal of the Korean Society of Radiology
    • /
    • v.16 no.6
    • /
    • pp.751-759
    • /
    • 2022
  • Currently, ultrasound examination for diagnostic ultrasound and health examination purposes is widely used, and it is showing an increasing trend due to the application of health insurance. However, the risk of ultrasound has not been clearly identified so far, and in this study, surface and deep temperature changes according to frequency and mode were measured by using a tissue mimicking phantom and TI and MI values were compared. A simulated phantom was manufactured by adding a small amount of kappa-caraginan powder with acoustic characteristics similar to that of the human body and potassium chloride for solidification, and the change of surface and depth temperature was measured using a surface thermometer and a probe thermometer. As a result, the convex probe using low frequency showed a higher temperature increase than the linear probe using high frequency, so there was a significant difference, and the temperature increase was the highest on the surface, and the depth of 1cm showed a temporary temperature increase, but there was no significant temperature change. There was no change in the deep temperature of 5 cm to 15 cm, and the TI and MI values did not change during the test time. Since only the surface temperature rose during the 15-minute test and there was no temperature change in the core, so it is not expected to show a temperature change that is harmful to the human body. However, it is thought that prolonged examination of one area may cause temperature rise, so it should be avoided.

In fluency on Refraction and Phase Cancellation Effect in Ultrasonic CT and its Correction (초음파 CT에서의 굴절 및 위상 상쇄 효과의 영향과 그 보정법)

  • 최종수
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.19 no.6
    • /
    • pp.33-40
    • /
    • 1982
  • Although ultrasonic CT is one of the useful techniques for tissue characterization, the reconstructed images, such as the velocity distribution and attenuation constant distribution, are degraded by reflection and refraction of ultrasonic beam. This paper studied the degradation effects on attenuation images using agar gel phantoms which were developed to evaluate ultrasonic CT. We found that the reconstructed attenuation constants at the center of the phantoms were less than the actual values by 0.6 dB/cm when phantom velocity differs by 25 m/s from surrounding saline. We also studied a correction method for refraction and phase cancellation effects, where the correction was made using the maximum value in the received subdata, as obtained by sub-arraying microprobes located at each sampling point. Using this method, we could obtain an improvement in the reconstructed image by the correction on the attenuation effect.

  • PDF

Heating Characteristics Evaluation of Superposed Sonication Using Glycerol Tissue Mimic Phantom (글리세롤 조직유사 팬텀을 이용한 초음파 중첩 조사에 따른 가열 특성 평가)

  • Noh, Si-Cheol;Kang, Sang-Sik;Park, Ji-Koon;Kim, Ju-Young;Jung, Bong-Jae
    • Journal of the Korean Society of Radiology
    • /
    • v.9 no.7
    • /
    • pp.523-528
    • /
    • 2015
  • In this study, we evaluated the heating characteristics of single sonication and superposed two low-intensity ultrasonic sonication. Compare the results, the superposed sonication was showed a superior thermal effect than single sonication. And the maximum temperature was increased as 120-150%. The starting time of temperature rising has been shortened in superposed sonication. In addition, the time up to the maximum temperature has been shortened, too. In generally, as the ultrasonic intensity is higher, the more surface damage is occurred. However, in the case of superposed sonication, the same thermal effect had be confirmed without surface damage. Through the results of the study, we thought that the superposed sonication will be able to reduce the intensity of the ultrasonic treatment. And, by using the low-intensity, the more safe and more effect therapy will be possible in therapeutic ultrasound application.

Influence of Microstructure on Reference Target on Ultrasonic Backscattering (기준표적상의 미세구조가 초음파 후방산란에 미치는 영향)

  • Kim, Ho-Chul;Kim, Yong-Tae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.29 no.1E
    • /
    • pp.38-44
    • /
    • 2010
  • This paper is based on our comments and proposed amendments to the documents, Annex A, Phantom for determining Maximum Depth of Penetration, and Annex B, Local Dynamic Range Using Acoustical Test Objects 87/400/CDV. IEC 61391-2 Ed. 1.0 200X, prepared by IEC technical Committee 87; Ultrasonics. The documents are concerned with the influence of microstructure of reference target material on the ultrasonic backscattering. Previous works on the attenuation due to backreflection and backscattering of reference target materials are reviewed. The drawback to the use of ungraded stainless steel and metallic materials without microstructural data such as, crystal structure, basic acoustic data of sound velocity and attenuation, grain size, roughness and elastic constants has been discussed. The analysis suggested that the insightful conclusion can be made by differentiating the influence arising from target size and microstructure on the backscattering measurements. The microstructural parameters are associated with physical, geometrical, acoustical and mechanical origins of variation with frequency. Further clarification of such a diverse source mechanisms for ultrasonic backscattering would make the target material and its application for medical diagnosis and therapy simpler and more reliable.

Analysis of Properties and Phantom Design Based on Plastic Hardener and Softener for Ultrasonic Imaging (초음파 영상용 플라스틱 기반의 팬텀제작 및 특성 분석)

  • Lee, G.J.;Park, D.H.;Shin, T.M.;Seo, J.B.
    • Journal of Biomedical Engineering Research
    • /
    • v.29 no.4
    • /
    • pp.302-306
    • /
    • 2008
  • Plastic hardener and softener based ultrasound phantoms were made in various constitutions and their acoustic properties were measured. Speed of sound is approximately $1.4\;mm/{\mu}sec$ in all the phantoms, which is about 7% less than that of in soft tissue. Attenuation coefficient is strongly dependent on the ratio between hardener and softener. In order to achieve the tissue level attenuation (0.5 dB/cm/MHz), 60% of hardener or less is required. The synthesized phantoms can be preserved for more than 6 months without structural degradation.

A Performance Enhancement of Osteoporosis Classification in CT images (CT 영상에서 골다공증 판별 방법의 성능 향상)

  • Jung, Sung-Tae
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.8
    • /
    • pp.1248-1259
    • /
    • 2016
  • Classification methods based on dual energy X-ray absorptiometry, ultrasonic waves, and quantitative computed tomography have been proposed. Also, a classification method based on machine learning with bone mineral density and structural indicators extracted from the CT images has been proposed. We propose a method which enhances the performance of existing classification method based on bone mineral density and structural indicators by extending structural indicators and using principal component analysis. Experimental result shows that the proposed method in this paper improves the correctness of osteoporosis classification 2.8% with extended structural indicators only and 4.8% with both extended structural indicators and principal component analysis. In addition, this paper proposes a method of automatic phantom analysis needed to convert the CT values to BMD values. While existing method requires manual operation to mark the bone region within the phantom, the proposed method detects the bone region automatically by detecting circles in the CT image. The proposed method and the existing method gave the same conversion formula for converting CT value to bone mineral density.

The Development of Ultrasonic Hyperthermia Simulator to Improve the Efficiency of Ultrasonic Therapy (초음파 치료의 효율성 향상을 위한 초음파 온열 시뮬레이터 개발)

  • Yu, W.J.;Noh, S.C.;Jung, D.W.;Park, J.H.;Choi, M.J.;Choi, H.H.
    • Journal of Biomedical Engineering Research
    • /
    • v.30 no.5
    • /
    • pp.418-427
    • /
    • 2009
  • As many people are westernizing their life style and food consumption habits, a number of patients who have malignant tumors which grow very rapidly and hazardously destroy the human body are increasing. Ultrasonic hyperthermia is not only one of the tumor treatment methods which employs the non-radioactive ultrasonic waves to increase the temperature at the tumor region up to $40\sim45^{\circ}C$ to destroy and suppress tumor cells but also has been proved by many studies. Due to the rapid development of High Intensity Focused Ultrasound(HIFU), the ultrasound hyperthemia extensively boosts its applications in clinical field. For those reasons, Computed simulation factor should be needed before inspection to patients. To prove efficiency of ultrasonic hyperthermia, precise acoustic field measurement considering tissue characteristics and a heating experiment with tissue mimicking material phantom were conducted for effectiveness of simulation program. Finally, in this study, the computer simulation program verified the anticipated temperature effects induced by ultrasound hyperthermia. In the near future, it is hoped that this simulation program could be utilized to improve the efficiency of ultrasound hyperthermia.

A Study on the Design and Fabrication of Fat Emulsification Adapted Focused Ultrasonic Transducer (지방 조직 유화를 위한 집속형 초음파 변환기 설계 및 제작에 관한 연구)

  • Kim, Ju-Young;Kim, Jae-Young;Jung, Hyun-Du;Noh, Si-Cheol;Mun, Chang-Su;Mun, Chi-Woong;Choi, Heung-Ho
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.11
    • /
    • pp.127-134
    • /
    • 2015
  • Tissue stimulation technique using ultrasound has been continuously studied and developed. Recently, as a increment of interests for obesity treatment and cosmetic care, a various studies on ultrasonic fat emulsification has been conducted. In this study, the fat emulsification adapted ultrasonic transducer was designed. And using designed transducer, the simulation for the shape of focal area and thermal degradation region was conducted. The dimensions were verified by the simulation results. And the effectiveness was confirmed by evaluating measured radiation characteristic and heating characteristic. In addition, we estimated the ultrasonic heating characteristics in composite structure medium. The shape of focal point and heating characteristic of the proposed transducer were determined to be sufficient to emulsify the fat. The results of this study are considered to be used as basic research in more efficient and safe ultrasonic fat removal.

A Convergence Study on the Measurement of Bacterial Pollution in Medical Ultrasonic Practice (의료용 초음파 실습 시 장치의 세균오염도 측정에 관한 융합적 연구)

  • Kim, Dong-Heun;Park, Sang-Hee;Park, Gyu-Tae;Jung, Won-Hee;Kim, So-Yeon;Hong, Hee-Jin;Son, Na-Ra;Nam, Seoul-Hee;Han, Man-Seok
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.10
    • /
    • pp.75-80
    • /
    • 2019
  • During the medical ultrasound exercise at school, we randomly select parts of the ultrasound device and areas with the most contact in the abdominal phantom to detect bacteria that are above the probe and determine the number of pathogens. I want to find out. The experimental method was rubbed 20 times with the sterilized cotton swab for sterilization and then smeared on Lysogeny broth (LB) agar, put into the incubator and incubated for 48 hours, and the colony forming unit (CFU) count was measured. The bacterial distribution of probe handle and abdominal phantom was evaluated by evaluation. As a result, the CFU value is the lens was $3.0{\pm}0.87$, print button was $5.5{\pm}1.06$, freeze button was $8.0{\pm}4.95$, phantom was $20.0{\pm}2.78$, line was $23.5{\pm}2.50$, and probe handle was measured as $35.3{\pm}10.75$. In this study, it is expected that attention to infection control of equipment during practice during medical ultrasound practice can be highlighted and further contributed to the reduction of bacterial infection rate of ultrasound devices.