• Title/Summary/Keyword: Ultra-low temperature

Search Result 320, Processing Time 0.027 seconds

Development of Ceramic Arc-tube by the PIM Process

  • Rhee, Byung-Ohk;Choi, Seung-Chul;Park, Jeong-Shik;Kim, Byoung-Kyu;Kim, Hyung-Soo;Kim, Sang-Woo
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.205-206
    • /
    • 2006
  • A ball-shape alumina arc-tube for low-wattage lamp was developed by the PIM process. An ultra high purity translucentgrade alumina powder was used. In injection molding process, a hot-runner type mold was developed. The translucent-grade alumina powder was extremely sensitive to contamination so that the injection molding condition and atmosphere control in the furnace should be taken care of with extreme caution. Contamination sources were pinpointed with EPMA. The arc-tube was molded in half and two halves were bonded in the middle by a new bonding technique at room temperature developed in this study.

  • PDF

Enhanced sticking coefficient in the BSCCO single crystal grown by the sputtering method (스퍼터링 법에 의한 BSCCO 단결정 성장의 부착 계수 향상)

  • Cheon, Min-Woo;Yang, Sung-Ho;Park, Yong-Pil
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.585-586
    • /
    • 2005
  • BSCCO thin films were fabricated by an ion beam sputtering method with an ultra-low growth rate, and sticking coefficients of the respective elements are evaluated. The sticking coefficient of Bi element in BSCCO film formation was observed to show a unique temperature dependence; it was almost a constant value of 0.49 below about $730^{\circ}C$ and decreased linearly over about $730^{\circ}C$. In contrast, Sr and Ca, displayed no such remarkable temperature dependence. This behavior of the sticking coefficient was explained consistently on the basis of the evaporation and sublimation processes of Bi2O3. It is considered that the liquid phase of the bismuth oxide plays an important role in the Bi 2212 phase formation in the co-deposition process.

  • PDF

R-T characteristic of Bi2212 Epitaxial thin films by growth in MgO(100) substrate (MgO(100)기판에 성장시킨 Bi2212 에피택셜 박막의 R-T특성)

  • Yang, Seung-Ho;Lim, Jung-Kwan;Park, Yong-Pil
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.537-538
    • /
    • 2006
  • BSCCO thin films have been fabricated by epitaxy growth at an ultra-low growth rate. The growth rates of the films was set in the region from 0.17 to 0.27 nm/min. MgO(100) was used as a substrate. In order to appreciate stable existing region of Bi 2212 phase with temperature and ozone pressure, the substrate temperature was varied between 650 and $720^{\circ}C$ and the highly condensed ozone gas pressure ($PO_3$) in vacuum chamber was varied between $2.0{\times}10^{-6}$ and $2.3{\times}10^{-5}\;Torr$.

  • PDF

Epitaxial thickness during low-temperature Si(001) growth: effect of substrate vicinality (저온 Si(001) 저온 성장중 에피텍시 두께: 기판 vicinality의 영향)

  • Lee, N.-E.
    • Journal of the Korean Vacuum Society
    • /
    • v.8 no.4B
    • /
    • pp.519-523
    • /
    • 1999
  • Epitaxial thickness $t_e(T_s)$ of Si films grown at the substrate temperature $T_s$=80~30$0^{\circ}C$ by ultra-high vacuum ion-beam sputter deposition onto nominally-singular, [100]-miscut Si(001) was measured. $t_e(T_s)$ values of films grown on vicinal Si(001) substrates were decreases compared to those of films grown on nominally-singular Si(001). Evolution of surface roughness measured by atomic force microscopy of films grown at $300^{\circ}C$ showed that the increases step density in vicinal substrates increases the tendency toward unstable growth resulting in larger surface roughness, which in turn decreases te.

  • PDF

Hydrocarbon Speciation in Low Temperature Diesel Combustion (저온 디젤 연소에서 발생하는 탄화수소 종 분석)

  • Han, Man-Bae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.4
    • /
    • pp.417-422
    • /
    • 2010
  • Low temperature diesel combustion was achieved via a combination of late injection timing ($8.5^{\circ}$ CA BTDC to $0.5^{\circ}$ CA BTDC) and heavy exhaust gas recirculation (37% to 48%) with ultra low sulfur Swedish diesel fuel in a 1.7L common rail direct injection diesel engine. When injection timing is retarded at a certain exhaust gas recirculation rate, the particulate matter and nitrogen oxides decease simultaneously, while the hydrocarbon and carbon monoxide increase. Hydrocarbon speciation by gas chromatography using a flame ionization detector reveals that the ratio of partially burned hydrocarbon, i.e., mainly alkenes increase as the injection timing is retarded and exhaust gas recirculation is increased. The two most abundant hydrocarbon species are ethene which is a representative species of partially burned hydrocarbons, and n-undecane, which is a representative species of unburned hydrocarbons. They may be used as surrogate hydrocarbon species for performing a bench flow reactor test for catalyst development.

Experimental Study on 15MW partially premixed Low NOx burner (15MW급 부분예혼합 초저 NOx 가스연소기에 관한 실험적 연구)

  • Kwon, Minjun;Shin, Myongchul;Kim, Sewon;Lee, Changyeop
    • 한국연소학회:학술대회논문집
    • /
    • 2012.11a
    • /
    • pp.123-125
    • /
    • 2012
  • In this study, combustion characteristics for 20t/h water tube boilers are studied. The burner by applying The fuel staging technology, the air staging technology, the partially premixed technology, the separated flame technology and the flame inner recirculation technology was designed. This study was to determine the combustion characteristics for the three types of burners. It is found that the result of flame temperature measurement is less than $1300^{\circ}C$ at the all flame region. also, emissions of NOx and CO are found to be 15.8 ppm and 18.9 ppm, respectively.

  • PDF

Structural analysis of $Al_{x}Ga_{1-x}As/In_{y}Ga_{1-y}$As P-HEMTs reverse engineering (Reverse Engineering을 이용한 $Al_{x}Ga_{1-x}As/In_{y}Ga_{1-y}$As P-HEMTs의 구조적 분석)

  • 김병헌;황광철;안형근;한득영
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.255-258
    • /
    • 2001
  • In this paper, DC and small signal characteristics with different physical parameters are expected for p-HEMTs (Pseudomorphic High Electron Mobility Transistors) with different temperatures ranging from 300K to 623K which are widely used for a low noise and/or ultra high frequency device. A device of 0.2$\times$200 ${\mu}{\textrm}{m}$$^2$dimension having very low noise has been chosen to extract the experimental data. Theoretical prediction has been obtained using a simulaor(HELENA) which needs experimental input data extracted from reverse engineering process. From the results, relation between structural parameters and temperature dependency of electrical characteristics are qualitatively explained to use in the design of descrete and integrated circuits to guarantee the optimal operation of the system.

  • PDF

Effective Annealing and Crystallization of Si Film for Advanced TFT System

  • Noguchi, Takashi
    • Journal of Information Display
    • /
    • v.11 no.1
    • /
    • pp.12-16
    • /
    • 2010
  • The effect of the crystallization and activated annealing of Si films using an excimer laser and the new CW blue laser are described and compared with furnace annealing for application in advanced TFTs and for future applications. Pulsed excimer laser annealing (ELA) is currently being used extensively as a low-temperature poly-silicon (LTPS) process on glass substrates as its efficiency is high in the ultra-violet (UV) region for thin Si films with thickness of 40-60 nm. ELA enables extremely low resistivity relating to high crystallinity for both the n- and p-type Si films. On the other hand, CW blue laser diode annealing (BLDA) enables the smooth Si surface to have arbitral crystal grains from micro-grains to an anisotropic huge grain structure only by controlling its power density. Both annealing techniques are expected to be applied in the future advanced TFT systems.

The Effect of Electron Beam Irradiation on the Electrical Characteristics of Low Density Polyethylene film (I) (저밀도 폴리에틸렌 박막의 전기적 특성에 미치는 전자선의 영향)

  • 조돈찬;신종열;차광훈;이수원;홍진웅
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1996.11a
    • /
    • pp.82-85
    • /
    • 1996
  • It is considered that the effect of radiation aging, such as electron beam due to the ultra-high voltage for transmission, on the physical properties and electrical characteristics of electrital insulating materials. Low-density polyethylene(thickness 100[${\mu}{\textrm}{m}$]) is selected as an experimental specimen. Fourier transform infra-red spectrum, X-ray diffraction, differential scanning calorimetry and scanning electron microscopy is used so as to analysis the physical properties, the morphological changes and the crystallinity of LDPE. And it is made an experiments of dielectric characteristics in the temperature range of 20[$^{\circ}C$]~120[$^{\circ}C$], in the frequency range of 30[Hz]~1.5$\times$10$^{5}$ [Hz] and in the applied voltage range of 300[mV]~1500[mV].

  • PDF

Influence of Sputtering Conditions on Properties of Copper Oxide Thin Films (스퍼터링 공정 조건이 산화 구리 박막 특성에 미치는 영향)

  • Cho, Jae Yu;Heo, Jaeyeong
    • Current Photovoltaic Research
    • /
    • v.5 no.1
    • /
    • pp.15-19
    • /
    • 2017
  • The fossil fuel power consumption generates $CO_2$, which causes the problems such as global warming. Also, the increase in energy consumption has accelerated the depletion of the fossil fuels, and renewable energy is attracting attention. Among the renewable energies, the solar energy gets a lot of attention as the infinite clean energy source. But, the supply level of solar cell is insignificant due to high cost of generation of electric power in comparison with fossil fuels. Thus several researchers are recently doing the research on ultra-low-cost solar cells. Also, $Cu_2O$ is one of the applied materials as an absorption layer in ultra-low-cost solar cells. Cuprous oxide ($Cu_2O$) is highly desirable semiconductor oxide for use in solar energy conversion due to its direct band gap ($E_g={\sim}2.1eV$) and a high absorption coefficient that absorbs visible light of wavelengths up to 650 nm. In addition, $Cu_2O$ has several advantages such as non-toxicity, low cost and can be prepared with simple and cheap methods on large scale. In this work, we fabricated the $Cu_2O$ thin films by reactive sputtering method. The films were deposited with a Cu target with variable parameters such as substrate temperature, rf-power, and annealing condition. Finally, we confirmed the structural properties of thin films by XRD and SEM.