DOI QR코드

DOI QR Code

Hydrocarbon Speciation in Low Temperature Diesel Combustion

저온 디젤 연소에서 발생하는 탄화수소 종 분석

  • Han, Man-Bae (Dept. of Mechanical and Automotive Engineering, Keimyung Univ.)
  • 한만배 (계명대학교 기계자동차공학과)
  • Published : 2010.04.01

Abstract

Low temperature diesel combustion was achieved via a combination of late injection timing ($8.5^{\circ}$ CA BTDC to $0.5^{\circ}$ CA BTDC) and heavy exhaust gas recirculation (37% to 48%) with ultra low sulfur Swedish diesel fuel in a 1.7L common rail direct injection diesel engine. When injection timing is retarded at a certain exhaust gas recirculation rate, the particulate matter and nitrogen oxides decease simultaneously, while the hydrocarbon and carbon monoxide increase. Hydrocarbon speciation by gas chromatography using a flame ionization detector reveals that the ratio of partially burned hydrocarbon, i.e., mainly alkenes increase as the injection timing is retarded and exhaust gas recirculation is increased. The two most abundant hydrocarbon species are ethene which is a representative species of partially burned hydrocarbons, and n-undecane, which is a representative species of unburned hydrocarbons. They may be used as surrogate hydrocarbon species for performing a bench flow reactor test for catalyst development.

1.7L 커먼 레일 직접 연료분사 디젤엔진과 초저유황 스웨덴 디젤 연료를 이용하여 연료분사시기 8.5CA BTDC~0.5CA BTDC 와 배기가스 재순환률 37%, 43%, 48% 영역에서 실험을 수행하였다. 각각의 배기가스 재순환률에 대하여 연료분사시기가 지각됨에 따라 매연과 질소산화물이 동시에 저감되나 탄화수소와 일산화탄소는 증가하는 저온 디젤 연소영역에 있음을 확인하였다. 탄화수소를 가스크로마토그래프와 불꽃 이온 검출기를 사용하여 종 분석을 수행하였으며, 연료분사시기가 지각될수록, 그리고 배기가스 재순환률이 증가할수록 Partially burned HC, 알켄의 비율이 증가하였다. Partially burned HC 중에서 에텐이, 그리고 Unburned HC 중에서 노말 운데케인이 가장 많이 배출되었다. 이 두 개의 탄화수소 종은 촉매 연구에 사용되는 벤치 플로우리액터 시험에서 대표적인 탄화수소 종으로 사용할 수 있다.

Keywords

References

  1. Akagawa, H., Miyamoto, T., Harada, A., Sasaki, S., Shimazaki, N., Hashizume, T., Tsujimura, K., 1999, “Approaches to Solve Problems of the Premixed Lean Diesel Combustion,” SAE Transactions – Journal of Engines, Vol. 109, Paper Number 1999-01-0183.
  2. Akihama, K., Takatori, Y., Inagaki, K., Sasaki, S., and Dean, A., 2001, “Mechanism of the Smokeless Rich Diesel Combustion by Reducing Temperature,” SAE Transactions – Journal of Engines, Vol. 110, Paper Number 2001-01-0655.
  3. Kimura, S., Aoki, O., Kitahara, Y., and Aiyoshizawa, E., 2001, “Ultra-Clean Combustion Technology Combining a Low-Temperature and Premixed Combustion Concept for Meeting Future Emission Standard,” SAE Transactions – Journal of Fuels & Lubricants, Vol. 110, Paper Number 2001-01-0200.
  4. Musculus, M. P. B., Lachaux, T., Pickett, L. M., and Idicheria, C. A., 2007, “End-of-Injection Over-Mixing and Unburned Hydrocarbon Emissions in Low- Temperature-Combustion Diesel Engines,” SAE Transactions – Journal of Passenger Cars: Mechanical Systems, Vol. 116, Paper Number 2007-01- 0907.
  5. Jackson, M., 1978, “Effect of Catalytic Emission Control on Exhaust Hydrocarbon Composition and Reactivity,” SAE Transactions, Vol. 87, Paper Number 780624.
  6. Kaiser, E. and Siegl, W., 1994, “High Resolution Gas Chromatographic Determination of the Atmospheric Reactivity of Engine-Out Hydrocarbon Emissions from a Spark-Ignited Engine,” J. High Resolution Chromatography, Vol. 17, pp. 264-270. https://doi.org/10.1002/jhrc.1240170414
  7. Bohac, S., Assanis, D., and Holmes, H., 2004, “Speciated Hydrocarbon Emissions and the Associated Local Ozone Production from an Automotive Gasoline Engine,” Int. J. Eng. Res., Vol. 5, No. 1, pp. 53-70. https://doi.org/10.1243/146808704772914246
  8. Han, M., Assanis, D. N., Jacobs, T. J., and Bohac, S. V., 2008, “Method and Detailed Analysis of Individual Hydrocarbon Species From Diesel Combustion Modes and Diesel Oxidation Catalyst,” ASME Transactions –J. Eng. Gas Turbines and Power, Vol. 130, pp. 042803-1 – 042803-10. https://doi.org/10.1115/1.2900728
  9. Han, M., Assanis, D. N., Bohac, S. V., 2009, “Sources of Hydrocarbon Emissions from Lowtemperature Premixed Compression Ignition Combustion from a Common Rail Direct Injection Diesel Engine,” Comb. Sci. Tech., Vol. 181, pp. 496-517. https://doi.org/10.1080/00102200802530066

Cited by

  1. Effects of Aromatics and T90 Temperature for High Cetane Number Fuels on Exhaust Emissions in Low-Temperature Diesel Combustion vol.35, pp.4, 2011, https://doi.org/10.3795/KSME-B.2011.35.4.371