• Title/Summary/Keyword: Ulsan-si

Search Result 363, Processing Time 0.03 seconds

Raman Characteristics of Polycrystalline 3C-SiC Thin Films (다결정 3C-SiC 박막의 라만 특성)

  • Jeong, Jun-Ho;Chung, Gwiy-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.357-358
    • /
    • 2007
  • Raman spectra of poly (polycrystalline) 3C-SiC thin films, which were deposited on the oxidized Si substrate by APCVD, have been measured. They were used to study the mechanical characteristics of poly 3C-SiC grown in various temperatures. TO and LO modes of 2.0 m poly 3C-SiC grown at 1180 C occurred at 794.4 and $965.7\;cm^{-1}$. Their FWHMs (full width half maximum) were used to investigate the stress and the disorder of 3C-SiC. The broad FWHM can explain that the crystallinity of 3C-SiC grown at 1180 C becomes poly crystalline instead of the disordered crystal. The ratio of intensity $I_{(LO)}/I_{(TO)}$ 1.0 means that the crystal defect of 3C-SiC/$SiO_2$/Si is small. The biaxial stress of poly 3C-SiC was obtained as 428 MPa. In the interface of 3C-SiC/$SiO_2$, the phonon mode of C-O bonding appeared at $1122.6\;cm^{-1}$. The phonon modes related to D and G bands of C-C bonding were measured at 1355.8 and $1596.8\;cm^{-1}$ respectively.

  • PDF

Effects of P Addition and Fading Time on the Primary Si Microstructure Changes of Hypereutectic Al-Si Alloy (과공정 Al-Si합금의 초정 Si 미세조직변화에 미치는 P 첨가와 fading 시간의 영향)

  • Park, Joo-Yul;Kim, Eok-Soo;Lee, Kwang-Hak
    • Journal of Korea Foundry Society
    • /
    • v.24 no.2
    • /
    • pp.85-93
    • /
    • 2004
  • Mechanical property of hypereutectic Al-Si alloy is changed according to size and distribution of primary Si. Consequently, the study on the refinement for primary Si is progressed for a long time. But such effect of refinement comes out fading phenomena with the lapse of time. Therefore, this study investigated the optimum condition of primary Si refinement for hypereutectic Al-Si alloy. And we observed various primary Si size with P's fading phenomena. The experiment results were as follows. For experiment of primary Si refinement, we made hypereutectic Al-Si alloy with various amounts of P addition. As a result of experiment, we obtained the fine microstructure at 0.01wt.%P. And the optimum condition of P addition, for preventing from growth of primary Si by P fading, is estimated 0.1wt.%P.

Electrical characteristics of polycrystalline 3C-SiC thin film diodes (다결정 3C-SiC 박막 다이오드의 전기적 특성)

  • Chung, Gwiy-Sang;Ahn, Jeong-Hak
    • Journal of Sensor Science and Technology
    • /
    • v.16 no.4
    • /
    • pp.259-262
    • /
    • 2007
  • This paper describes the electrical characteristics of polycrystalline (poly) 3C-SiC thin film diodes, in which poly 3C-SiC thin films on n-type and p-type Si wafers, respectively, were deposited by APCVD using HMDS, $H_{2}$, and Ar gas at $1150^{\circ}C$ for 3 hr. The schottky diode with Au/poly 3C-SiC/Si (n-type) structure was fabricated. Its threshold voltage ($V_{bi}$), breakdown voltage, thickness of depletion layer, and doping concentration ($N_{D}$) value were measured as 0.84 V, over 140 V, 61 nm, and $2.7{\times}10^{19}cm^{-3}$, respectively. Moreover, for the good ohmic contact, Al/poly 3C-SiC/Si (n-type) structure was annealed at 300, 400, and $500^{\circ}C$, respectively for 30 min under the vacuum condition of $5.0{\times}10^{-6}$ Torr. Finally, the p-n junction diodes fabricated on the poly 3C-Si/Si (p-type) were obtained like characteristics of single 3CSiC p-n junction diode. Therefore, poly 3C-SiC thin film diodes will be suitable for microsensors in conjunction with Si fabrication technology.

Crystal growth of polyctystalline 3C-SiC thin films on AlN buffer layer (AlN 완충층을 이용한 다결정 3C-SiC 박막의 결정성장)

  • Kim, Kang-San;Chung, Gwiy-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.333-334
    • /
    • 2007
  • This paper describes the characteristics of poly (polycrystalline) 3C-SiC grown on SiOz and AlN substrates, respectively. The crystalline quality of poly 3C-SiC was improved from resulting in decrease of FWHM (full width half maximum) of XRD by increasing the growth temperature. The minimum growth temperature of poly 3C-SiC was $1100^{\circ}C$. The surface chemical composition and the electron mobility of poly 3C-SiC grown on each substrate were investigated by XPS and Hall Effect, respectively. The chemical compositions of surface of poly 3C-SiC films grown on $SiO_2$ and AlN were not different. However, their electron mobilities were $7.65\;cm^2/V.s$ and $14.8\;cm^2/V.s$, respectively. Therefore, since the electron mobility of poly 3C-SiC films grown on AlN buffer layer was two times higher than that of 3C-SiC/$SiO_2$, a AlN film is a suitable material, as buffer layer, for the growth of poly 3C-SiC thin films with excellent properties for M/NEMS applications.

  • PDF

Electrical characteristics of in-situ doped polycrystalline 3C-SiC thin films grown by CVD (CVD로 in-situ 도핑된 다결정 3C-SiC 박막의 전기적 특성)

  • Kim, Kang-San;Chung, Gwiy-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.199-200
    • /
    • 2009
  • This paper describes the electrical properties of polycrystalline (poly) 3C-SiC thin films with different nitrogen doping concentrations. The in-situ-doped poly 3C-SiC thin films were deposited by using atmospheric-pressure chemical vapor deposition (APCVD) at $1200^{\circ}C$ with hexamethyldisilane (HMDS: $Si_2$ $(CH_3)_6)$ as a single precursor and 0 ~ 100 sccm of $N_2$ as the dopant source gas. The peaks of the SiC (111) and the Si-C bonding were observed for the poly 3C-SiC thin films grown on $SiO_2/Si$ substrates by using X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR) analyses, respectively. The resistivity of the poly 3C-SiC thin films decreased from $8.35\;{\Omega}{\cdot}cm$ for $N_2$ of 0 sccm to $0.014\;{\Omega}{\cdot}cm$ with $N_2$ of 100 sccm. The carrier concentration of the poly 3C-SiC films increased with doping from $3.0819\;{\times}\;10^{17}$ to $2.2994\;{\times}\;10^{19}\;cm^{-3}$, and their electronic mobilities increased from 2.433 to $29.299\;cm^2/V{\cdot}S$.

  • PDF

Effects of In-situ doping Concentration on the Characteristics of Porous 3C-SiC Thin Films (In-situ 도핑량이 다공성 3C-SiC 박막의 특성에 미치는 영향)

  • Kim, Kang-San;Chung, Gwiy-Sang
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.6
    • /
    • pp.487-490
    • /
    • 2010
  • This paper describes the elecrtical and optical characteristics of $N_2$ doped porous 3C-SiC films. Polycrystalline 3C-SiC thin films are anodized by $HF+C_2H_5OH$ solution with UV-LED exposure. The growth of in-situ doped 3C-SiC thin films on p-type Si (100) wafers is carried out by using APCVD (atmospheric pressure chemical vapor deposition) with a single-precursor of HMDS (hexamethyildisilane: $Si_2(CH_3)_6)$. 0 ~ 40 sccm $N_2$ was used for doping. After the growth of doped 3C-SiC, porous 3C-SiC is formed by anodization with $7.1\;mA/cm^2$ current density for anodization time of 60 sec. The average pore diameter is about 30 nm, and etched area is increased with $N_2$ doping rate. These results are attributed to the decrease of crystallinity by $N_2$ doping. Mobility is dramatically decreased in porous 3C-SiC. The band gaps of polycrystalline 3C-SiC films and doped porous 3C-SiC are 2.5 eV and 2.7 eV, respectively.

Characteristics of in-situ doped polycrystalline 3C-SiCthin films for M/NEMS applications (In-situ 도핑된 M/NEMS용 다결정 3C-SiC 박막의 특성)

  • Kim, Kang-San;Chung, Gwiy-Sang
    • Journal of Sensor Science and Technology
    • /
    • v.17 no.5
    • /
    • pp.325-328
    • /
    • 2008
  • This paper describes the electrical properties of poly (polycrystalline) 3C-SiC thin films with different nitrogen doping concentrations. In-situ doped poly 3C-SiC thin films were deposited by APCVD at $1200^{\circ}C$ using HMDS (hexamethyildisilane: $Si_2(CH_3)_6)$) as Si and C precursor, and $0{\sim}100$ sccm $N_2$ as the dopant source gas. The peak of SiC is appeared in poly 3C-SiC thin films grown on $SiO_2/Si$ substrates in XRD(X-ray diffraction) and FT-IR(Fourier transform infrared spectroscopy) analyses. The resistivity of poly 3C-SiC thin films decreased from $8.35{\Omega}{\cdot}cm$ with $N_2$ of 0 sccm to $0.014{\Omega}{\cdot}cm$ with 100 sccm. The carrier concentration of poly 3C-SiC films increased with doping from $3.0819{\times}10^{17}$ to $2.2994{\times}10^{19}cm^{-3}$ and their electronic mobilities increased from 2.433 to $29.299cm^2/V{\cdot}S$, respectively.

Fabrication of polycrystalline 3C-SiC thin film diodes (다결정 3C-SiC 박막 다이오드의 제작)

  • Ahn, Jeong-Hak;Chung, Gwiy-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.348-349
    • /
    • 2007
  • This paper describes the electrical characteristics of polycrystalline (poly) 3C-SiC thin film diodes, in which poly 3C-SiC thin films on n-type and p-type Si wafers, respectively, were deposited by APCVD using HMDS, Hz, and Ar gas at $1180^{\circ}C$ for 3 hr. The schottky diode with Au/poly 3C-SiC/Si(n-type) structure was fabricated. Its threshold voltage ($V_d$), breakdown voltage, thickness of depletion layer, and doping concentration ($N_D$) values were measured as 0.84 V, over 140 V, 61nm, and $2.7\;{\times}\;10^{19}\;cm^3$, respectively. The p-n junction diodes fabricated on the poly 3C-SiC/Si(p-type) were obtained like characteristics of single 3C-SiC p-n junction diodes. Therefore, poly 3C-SiC thin film diodes will be suitable microsensors in conjunction with Si fabrication technology.

  • PDF

Properties of Single Crystalline 3C-SiC Thin Films Grown with Several Carbonization Conditions (여러 탄화조건에 따라 성장된 단결정 3C-SiC 박막의 특성)

  • Shim, Jae-Cheol;Chung, Gwiy-Sang
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.11
    • /
    • pp.837-842
    • /
    • 2010
  • This paper describes the crystallinity, growth rate, and surface morphology of single crystalline 3C-SiC (cubic silicon carbide) thin films grown with several carbonization conditions such as temperature, $C_3H_8$ flow rate, time. In case of carbonization, an increase in the carbonization temperature caused a increase in the size and numbers of unsealed void (big black spot) which decrease the crystallinity. In addition, optimal $C_3H_8$ flow rate made carbonization layer form well and prevented the formation of voids. Also, after a period of time, the growth of carbonization layer did not increase no more. The single crystalline 3C-SiC thin films on optimal carbonized Si substrate showed an improvement on the crystallinity, the growth rate, the roughness, and the carrier concentration.

Mechanical properties of polycrystalline 3C-SiC thin films with various doping concentrations (도핑농도에 따른 다결정 3C-SiC 박막의 기계적 특성)

  • Kim, Kang-San;Chung, Gwiy-Sang
    • Journal of Sensor Science and Technology
    • /
    • v.17 no.4
    • /
    • pp.256-260
    • /
    • 2008
  • This paper describes the mechanical properties of poly(polycrystalline) 3C-SiC thin films with various doping concentration, in which poly 3C-SiC thin fil's mechanical properties according to the n-doping concentration 1($9.2{\times}10^{15}cm^{-3}$), 3($5.2{\times}10^{17}cm^{-3}$), and 5%($6.8{\times}10^{17}cm^{-3}$) respectively were measured by nano indentation. In the case of $9.2{\times}10^{15}cm^{-3}n$-doping concentration, Young's modulus and hardness were obtained as 270 and 30 GPa, respectively. When the surface roughness according to n-doping concentrations was investigated by AFM(atomic force microscope), the roughness of poly 3C-SiC thin films doped by 5% concentration was 15 nm, which is also the best of them.