DOI QR코드

DOI QR Code

Properties of Single Crystalline 3C-SiC Thin Films Grown with Several Carbonization Conditions

여러 탄화조건에 따라 성장된 단결정 3C-SiC 박막의 특성

  • 심재철 (울산대학교 전기전자정보시스템공학부) ;
  • 정귀상 (울산대학교 전기전자정보시스템공학부)
  • Received : 2010.07.15
  • Accepted : 2010.10.22
  • Published : 2010.11.01

Abstract

This paper describes the crystallinity, growth rate, and surface morphology of single crystalline 3C-SiC (cubic silicon carbide) thin films grown with several carbonization conditions such as temperature, $C_3H_8$ flow rate, time. In case of carbonization, an increase in the carbonization temperature caused a increase in the size and numbers of unsealed void (big black spot) which decrease the crystallinity. In addition, optimal $C_3H_8$ flow rate made carbonization layer form well and prevented the formation of voids. Also, after a period of time, the growth of carbonization layer did not increase no more. The single crystalline 3C-SiC thin films on optimal carbonized Si substrate showed an improvement on the crystallinity, the growth rate, the roughness, and the carrier concentration.

Keywords

References

  1. J. B. Casady, and R. W. Johnson, Solid-State Electron., 39, 1409 (1996). https://doi.org/10.1016/0038-1101(96)00045-7
  2. A. Elasser, and P. Chow, Proc. IEEE, 90, 969 (2002). https://doi.org/10.1109/JPROC.2002.1021562
  3. N. Kubo, T. Kawase, S. Asahina, N. Kanayama, H. Tsuda, A. Moritani, and K. Kitahara, Jpn. J. Appl. Phys., 43, 7654 (2004). https://doi.org/10.1143/JJAP.43.7654
  4. A. J. Steckl, C. Yuan, and J. P. Li, Appl. Phys. Lette., 63, 3347 (1993). https://doi.org/10.1063/1.110140
  5. M. Zielinski, A. Leycuras, S. Ndiaye, and T. Chassagne, J. Appl. Phys. Lett, 89, 131906 (2006). https://doi.org/10.1063/1.2357569
  6. S. Nishino, J. A. Powell, and H. A. Will, Appl. Phys. Lett., 42, 460 (1983). https://doi.org/10.1063/1.93970
  7. A. Severinoa, C. Frewinc, C. Bongiornoa, R. Anzalonea, S. E. Saddow, and F. La Via. Diam. Relat. Mater., 18, 1440 (2009). https://doi.org/10.1016/j.diamond.2009.09.012
  8. A. J. Steckl, and J. P. Li, IEEE Trans. Electron Devices., 39, 64 (1992). https://doi.org/10.1109/16.108213
  9. N. Becourt, J. L. Ponthenier, A. M. Papon, and C. Jaussaud, Physica B, 185, 79 (1993). https://doi.org/10.1016/0921-4526(93)90217-T
  10. Z. D. Sha, X. M. Wu, and L. J. Zhuge, Phys. Lett. A, 346, 186 (2005). https://doi.org/10.1016/j.physleta.2005.07.048
  11. M. A. Capano, B. C. Kim, A. R. Smith, E. P. Kvam, S. Tsoi, and A. K. Ramdas, J. Appl. Phys., 100, 083514 (2006). https://doi.org/10.1063/1.2357842
  12. V. Cimalla, K. V. Karagodina, J. Pezoldt, and G. Eichhorn, Mat. sci. Eng. B, 29, 170 (1995). https://doi.org/10.1016/0921-5107(94)04047-8