• 제목/요약/키워드: Ulam-Hyers stability

검색결과 349건 처리시간 0.021초

On a general hyers-ulam stability of gamma functional equation

  • Jung, Soon-Mo
    • 대한수학회보
    • /
    • 제34권3호
    • /
    • pp.437-446
    • /
    • 1997
  • In this paper, the Hyers-Ulam stability and the general Hyers-Ulam stability (more precisely, modified Hyers-Ulam-Rassias stability) of the gamma functional equation (3) in the following setings $$ \left$\mid$ f(x + 1) - xf(x) \right$\mid$ \leq \delta and \left$\mid$ \frac{xf(x)}{f(x + 1)} - 1 \right$\mid$ \leq \frac{x^{1+\varepsilon}{\delta} $$ shall be proved.

  • PDF

HYERS-ULAM-RASSIAS STABILITY OF A SYSTEM OF FIRST ORDER LINEAR RECURRENCES

  • Xu, Mingyong
    • 대한수학회보
    • /
    • 제44권4호
    • /
    • pp.841-849
    • /
    • 2007
  • In this paper we discuss the Hyers-Ulam-Rassias stability of a system of first order linear recurrences with variable coefficients in Banach spaces. The concept of the Hyers-Ulam-Rassias stability originated from Th. M. Rassias# stability theorem that appeared in his paper: On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), 297-300. As an application, the Hyers-Ulam-Rassias stability of a p-order linear recurrence with variable coefficients is proved.

HYERS-ULAM-RASSIAS STABILITY OF A CUBIC FUNCTIONAL EQUATION

  • Najati, Abbas
    • 대한수학회보
    • /
    • 제44권4호
    • /
    • pp.825-840
    • /
    • 2007
  • In this paper, we will find out the general solution and investigate the generalized Hyers-Ulam-Rassias stability problem for the following cubic functional equation 3f(x+3y)+f(3x-y)=15f(x+y)+15f(x-y)+80f(y). The concept of Hyers-Ulam-Rassias stability originated from Th. M. Rassias# stability theorem that appeared in his paper: On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72(1978), 297-300.

REFINED HYERS-ULAM STABILITY FOR JENSEN TYPE MAPPINGS

  • Rassias, John Michael;Lee, Juri;Kim, Hark-Mahn
    • 충청수학회지
    • /
    • 제22권1호
    • /
    • pp.101-116
    • /
    • 2009
  • In 1940 S.M. Ulam proposed the famous Ulam stability problem. In 1941 D.H. Hyers solved the well-known Ulam stability problem for additive mappings subject to the Hyers condition on approximately additive mappings. In this paper we improve results for Jensen type mappings and establish new theorems about the Ulam stability of additive and alternative Jensen type mappings.

  • PDF

ON THE STABILITY OF FUNCTIONAL EQUATIONS IN n-VARIABLES AND ITS APPLICATIONS

  • KIM, GWANG-HUI
    • 대한수학회논문집
    • /
    • 제20권2호
    • /
    • pp.321-338
    • /
    • 2005
  • In this paper we investigate a generalization of the Hyers-Ulam-Rassias stability for a functional equation of the form $f(\varphi(X))\;=\;\phi(X)f(X)$, where X lie in n-variables. As a consequence, we obtain a stability result in the sense of Hyers, Ulam, Rassias, and Gavruta for many other equations such as the gamma, beta, Schroder, iterative, and G-function type's equations.

QUALITATIVE ANALYSIS OF A PROPORTIONAL CAPUTO FRACTIONAL PANTOGRAPH DIFFERENTIAL EQUATION WITH MIXED NONLOCAL CONDITIONS

  • Khaminsou, Bounmy;Thaiprayoon, Chatthai;Sudsutad, Weerawat;Jose, Sayooj Aby
    • Nonlinear Functional Analysis and Applications
    • /
    • 제26권1호
    • /
    • pp.197-223
    • /
    • 2021
  • In this paper, we investigate existence, uniqueness and four different types of Ulam's stability, that is, Ulam-Hyers stability, generalized Ulam-Hyers stability, Ulam-Hyers-Rassias stability and generalized Ulam-Hyers-Rassias stability of the solution for a class of nonlinear fractional Pantograph differential equation in term of a proportional Caputo fractional derivative with mixed nonlocal conditions. We construct sufficient conditions for the existence and uniqueness of solutions by utilizing well-known classical fixed point theorems such as Banach contraction principle, Leray-Schauder nonlinear alternative and $Krasnosel^{\prime}ski{\breve{i}}{^{\prime}}s$ fixed point theorem. Finally, two examples are also given to point out the applicability of our main results.

LOCAL STABILITY OF CAUCHY FUNCTIONAL EQUATION

  • Park, Kyoo-Hong;Lee, Young-Whan;Ji, Kyoung-Sihn
    • Journal of applied mathematics & informatics
    • /
    • 제8권2호
    • /
    • pp.581-590
    • /
    • 2001
  • In this paper we prove a local stability of Gavruta’s theorem for the generalized Hyers-Ulam-Rassias Stability of Cauchy functional equation.