References
- R. P. Agarwal, B. Xu, and W. Zhang, Stability of functional equations in single variable, J. Math. Anal. Appl. 288 (2003), no. 2, 852-869 https://doi.org/10.1016/j.jmaa.2003.09.032
- G. L. Forty, Hyers-Ulam stability of functional equations in several variables, Aequationes Math. 50 (1995), no. 1-2, 143-190 https://doi.org/10.1007/BF01831117
- G. L. Forty, Comments on the core of the direct method for proving Hyers-Ulam stability of functional equations, J. Math. Anal. Appl. 295 (2004), no. 1, 127-133 https://doi.org/10.1016/j.jmaa.2004.03.011
- R. Ger, Superstability is not natural, In Report of the twenty-sixth International Symposium on Functional Equations, Aequationes Math. 37 (1989), 68
- D. H. Hyers, On the stability of the linear functional equation, Proc. Natl. Acad. Sci. USA 27 (1941), 222-224 https://doi.org/10.1073/pnas.27.4.222
- D. H. Hyers and Th. M. Rassias, Approximate homomorphisms, Aequationes Math. 44 (1992), no. 2-3, 125-153 https://doi.org/10.1007/BF01830975
- Y. H. Lee and K. W. Jun, A generalization of the Hyers-Ulam-Rassias stability of Jensen's equation, J. Math. Anal. Appl. 238 (1999), no. 1, 305-315 https://doi.org/10.1006/jmaa.1999.6546
- K. Nikodem, The stability of the Pexider equation, Ann. Math. Sil. No. 5 (1991), 91-93
- D. Popa, Hyers-Ulam-Rassias stability of a linear recurrence, J. Math. Anal. Appl. 309 (2005), no. 2, 591-597 https://doi.org/10.1016/j.jmaa.2004.10.013
- D. Popa, Hyers-Ulam stability of the linear recurrence with constant coefficients, Adv. Difference Equ. 2005 (2005), no. 2, 101-107 https://doi.org/10.1155/ADE.2005.101
- Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), no. 2, 297-300 https://doi.org/10.1090/S0002-9939-1978-0507327-1
- L. Szekelyhidi, The stability of the sine and cosine functional equations, Proc. Amer. Math. Soc. 110 (1990), no. 1, 109-115 https://doi.org/10.1090/S0002-9939-1990-1015685-2
- J. Tabor, On functions behaving like additive functions, Aequationes Math. 35 (1988), no. 2-3, 164-185 https://doi.org/10.1007/BF01830942
- T. Trif, On the stability of a general gamma-type functional equation, Publ. Math. Debrecen 60 (2002), no. 1-2, 47-61
- S. M. Ulam, Problems in modern mathematics, Science Editions John Wiley & Sons, Inc., New York, 1964
Cited by
- Hyers–Ulam stability and discrete dichotomy vol.423, pp.2, 2015, https://doi.org/10.1016/j.jmaa.2014.10.082
- Hyers–Ulam stability and discrete dichotomy for difference periodic systems vol.140, pp.8, 2016, https://doi.org/10.1016/j.bulsci.2016.03.010