• Title/Summary/Keyword: UWB System

Search Result 522, Processing Time 0.035 seconds

Accuracy of Free Space Path Loss and Matched Filter Gain Approximated by Using Passband Rectangular Pulse for Ultra Wideband Radio Systems

  • Supanakoon, Pichaya;Tanchotikul, Suchada;Tangtisanon, Prakit;Promwong, Sathaporn;Takada, Jun-Ichi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.223-226
    • /
    • 2004
  • This paper analyzes the accuracy of free space path loss and matched filter gain approximated by using a passband rectangular pulse for ultra wideband (UWB) radio systems. The example causal signal, a modulated Gaussian pulse with the same center frequency and frequency bandwidth of the passband rectangular pulse, is used to consider the accuracy. The path loss and matched filter gain of the modulated Gaussian pulse are simulated for the reference results. The UWB free space path loss is shown and is compared with that obtained from simulation and Friis' transmission formula. The UWB matched filter gain is shown and compared with simulation results. From the results, we can see that the UWB path loss formula is more accurate than the Friis' transmission formula. The results from the UWB free space path loss and matched filter gain formulas agree with the simulation. Then, these free space path loss and matched filter gain formulas approximated by using a passband rectangular pulse are appropriate for UWB system.

  • PDF

Development of UWB Sinuous Antenna with Dielectric Lens for 3~6 GHz Band Application (유전체 렌즈를 가진 3~6GHz대용 UWB 시뉴어스 안테나 개발)

  • Lee, Dong Real
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.15 no.6
    • /
    • pp.239-244
    • /
    • 2015
  • Recently, Impulse radars using UWB technologies are widely use for measuring distance, or for transmitting uncompressed high resolution videos. However, since the UWB band spans over octave bands, it is not easy to design such a system. Wide band impedance matching is required for antennas and other RF area. In this study, we designed and fabricated sinuous antenna for 3~6 GHz octave band application. We also designed and attached a dielectric lens to improved the directional gain of the antenna. The gain of the antenna was 6~10 dBi. The dielectric lens attached sinuous antenna was used to transmit HD video data. The maximum reach distance was 90 meter with 10mW power.

Improving the SFD Detection Performance of IEEE802.15.4a IR-UWB System (IEEE 802.15.4a IR-UWB 시스템의 SFD 검출 성능 개선 방안)

  • Lee, Ji-Yeon;Kang, Dong-Hoon;Park, Hyo-Bae;Oh, Wang-Rok
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.4C
    • /
    • pp.358-363
    • /
    • 2010
  • In IEEE 802.15.4a IR-UWB (Impulse Radio Ultra Wideband) systems, it is crucial to acquire initial carrier/timing synchronization and estimate channel response by exploiting the SYNC symbols embedded in each packet. On the other hand, it is also crucial to detect the SFD pattern followed by the header and data symbols to reliably extract the information contained in the packet. In this paper, we propose a reliable SFD detection scheme utilizing some surplus SYNC symbols in addition to SFD symbols to improve the SFD detection performance.

Design of UWB Tapered Slot Antenna for the Optimum Impulse Radio Transmitting & Receiving (최적 임펄스 전송을 위한 초광대역 테이퍼 슬롯 안테나 설계)

  • Koh, Young-Mok;Ra, Keuk-Hwan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.6
    • /
    • pp.553-563
    • /
    • 2010
  • This paper presents a tapered slot-antenna(TSA) for optimal impulse-signal transmission in ultra-wide band(UWB). The proposed TSA provides radiates in end-fire direction, which meets an impulse-radio UWB(IR-UWB) system demands(e.g., low loss, thus less error throughout the UWB band). In order to minimize the pulse distortion, we used an wideband impedance transformer and a microstrip slotline. The pulse fidelity characteristics was evaluated with finite-difference time-domain(FDTD) analysis technique and pulse fidelity correlation equation. Approximately 93.89 % pulse fidelity was obtained between the two antennas in 0.5 m range. Additionally, derived chirp Z-transform algorithm enables us to utilize the zoom-in option on the pulse signal in few nano-seconds below. Thus, it is possible to analyze the pulse signal distortion, delay or dispersion characteristics.

A 3~5 GHz Interferer Robust IR-UWB RF Transceiver for Data Communication and RTLS Applications (간섭 신호에 강인한 특성을 갖는 데이터 통신과 위치 인식 시스템을 위한 3~5 GHz 대역의 IR-UWB RF 송수신기)

  • Ha, Jong Ok;Park, Myung Chul;Jung, Seung Hwan;Eo, Yun Seong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.1
    • /
    • pp.70-75
    • /
    • 2014
  • This paper presents a IR-UWB(Impulse Radio Ultra-Wide Band) transceiver circuit for data communication and real time location system. The UWB receiver is designed to OOK(On-Off Keying) modulation for energy detection. The UWB pulse generator is designed by digital logic. And the Gaussian filter is adopted to reject side lobe in transmitter. The measured sensitivity of the receiver is -65 dBm at 4 GHz with 1 Mbps PRF(Pulse Repetition Frequency). And the measured energy efficiency per pulse is 20.6 pJ/bit. The current consumption of the receiver and transmitter including DA is 27.5 mA and 25.5 mA, respectively, at 1.8 V supply.

Design of UWB Antenna with Fork-type structure and circular patch (원형 패치와 포크형 구조가 결합된 UWB 안테나)

  • Ha, Yun-Sang;Kim, Gi-Rae;Choi, Young-Kyu;Yun, Joong-Han
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.10
    • /
    • pp.1837-1844
    • /
    • 2016
  • This paper proposes an antenna of the fork type structure that operates in the UWB (Ultra Wide Band) frequency band (3.1 ~ 10.6 GHz). The proposed antenna is attached a circular patch in order to obtain the UWB band characteristics to the fork-type patch antenna. The ground plane is implemented in a arc-shape configuration. The effect of various parameters of the modified fork type radiating patch and partial arc ground plane for UWB operation is investigated. The proposed antenna is made of $34.0{\times}50.0{\times}1.0mm^3$ and is fabricated on the permittivity 4.4 FR-4 substrate. The experiment results shown that the proposed antenna obtained the -10 dB impedance bandwidth 8200 MHz (2.7 ~ 10.9 GHz) covering the UWB bands. This result satisfied the characteristics of ultra-wideband and the proposed antenna will be applicable to an ultra wideband system.

GISPD Analysis Using UHF Dual-Band Method (UHF이중대역법을 이용한 GISPD분석)

  • Kim, Kwang-Hwa;Yi, Sang-Hwa;Choi, Jae-Gu
    • Proceedings of the KIEE Conference
    • /
    • 2004.07c
    • /
    • pp.1860-1862
    • /
    • 2004
  • It is widely known that the ultra high frequency (UHF) method that detects the electromagnetic wave of the PD pulses in the gas insulated space is one of the most competitive methods for its high sensitivity. From the above point of view, this paper describes the characteristics of GIS PD signals measured with ultra wide band (UWB) GIS PD detecting system in which PD signals are detected into the dual UHF band. The UWB PD detection system consists of the UWB UHF coupler, the UWB low noise amplifier (LNA) and the oscilloscope. The dual bands for PD signals are 0.5-2GHz(full band) and 1-2GHz(high band). As results, it was found that the partial discharges of each defect have their own characteristic pattern and the ratio of High band to Full band increases with gas pressure.

  • PDF

Design and Analysis of UWB Elliptical Slot Antenna (UWB 타원형 슬롯 안테나의 설계 및 해석)

  • Jang, Joon-Won;Choi, Kyung;Hwang, Hee-Yong
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.419-422
    • /
    • 2007
  • This paper, designed UWB elliptical slot antenna and analysis based on the distribution of the electromagnetic fields pattern and resonant mode of designed antenna is presented. Designed antenna is fabricated on FR4 substrate with thickness of 1.524mm and relative dielectric constant 4.4. The measured bandwidth of $3.6GHz{\sim}20GHz$ for VSWR<2. Through the field pattern and resonant mode analysis that the slot antenna operates on a series of the multi-pole radiation based on TE modes matched to system impedance. And the perfect magnetic wall is along the axis of symmetry on the y-z plane. This result gives us an easier method to design the similar antennas, which is the impedance matching to the system impedance after once constructing a proper structure with a series of multi-mode resonances.

  • PDF

UWB Asynchronous Wireless Positioning System by Sequentially Ordered Transmission (순차송수신방식을 이용한 UWB 무선측위 시스템에 관한 연구)

  • Choi, Sung-Soo;Oh, Hui-Myung;Lee, Won-Cheol;Kim, Kwan-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2005.07d
    • /
    • pp.3046-3048
    • /
    • 2005
  • 저비용, 저전력 운영이 가능한 초광대역(UWB) 통신기술의 핵심 기술 분야 가운데 하나인 무선위치기반 시스템(Wireless Location Based System) 혹은 무선측위기술은 향후 전기-IT융합 유비쿼터스 메쉬네트워크에서 휴먼인터페이스접목, 지능형홈 뿐만아니라, 유비쿼터스 환경의 ad-hoc 센서 네트워크에서 중요한 역할을 맡게된다. 본 논문에서는 다양한 방식의 무선측위기술에 대해 소개하고자 하며, 순차송수신방식을 이용한 UWB 무선측위기반 시스템 및 운영방안을 새롭게 제안하고자 한다.

  • PDF

Preamble Design for UWB-MIMO System (UWB-MIMO 시스템의 프리엠블 구조 설계)

  • Lee, Hongwon;Suh, Jungwon;Chung, Jaehak;Cho, Sangin;Choi, Sangsung
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.2 no.1
    • /
    • pp.66-75
    • /
    • 2007
  • In this paper, we have propose a preamble structure and synchronization/channel estimation method for UWB-MIMO which has 960Mbps transmit rate. The proposed structure is a compatible preamble structure for synchronization/channel estimation used by MIMO in MB-OFDM(Multi-Band OFDM) systems that are one of the standard systems of MBOA. The system is compatible with MB-OFDM using the proposed preamble structure. In this paper, we argue the problem in receiver part used by MIMO technique. And we simulate the proposed preamble for using synchronization/channel estimation. The simulation result shows the same performance compared with single receiver antenna.

  • PDF