• Title/Summary/Keyword: U5 LTR

Search Result 11, Processing Time 0.02 seconds

Reactivity of Prototype Foamy Virus Integrase to the Mutants of the Highly Conserved Terminal Sequence of U5 LTR (원조포미바이러스 U5 LTR 말단의 보존적인 잔기의 돌연변이에 대한 인테그라제의 반응성)

  • Hyun, U-Sok;Lee, Dong-Hyun;Ko, Hyun-Tak;Shin, Cha-Gyun
    • YAKHAK HOEJI
    • /
    • v.52 no.2
    • /
    • pp.125-130
    • /
    • 2008
  • The long terminal repeat (LTR) of retroviral DNA genome plays an important role in the integration process by providing substrate recognition site for viral integrase (IN). The dinucleotide CA near the 3'-end of the LTR termini is completely conserved among retoviruses. In order to study specificity of interaction between prototype foamy virus (PFV) IN and its U5 LTR DNA, the effect of mutagenesis of the CA sequence was investigated by studying reactivity of PFV IN to the mutant LTR substrates. Replacement of only the C or the A allowed 60 to 100% of the reactivity of the wild type LTR substrate. In addition, replacement of the C and the A showed 50 to 80% of the reactivity of the wild type LTR substrate, indicating that PFV IN has less specificity on the conserved CA sequence when it is compared to the other retroviral INs. Therefore it is suggested that PFV IN is less dependent on the conserved sequence of LTR termini for its enzymatic reaction.

Functional Nucleotides of U5 LTR Determining Substrate Specificity of Prototype Foamy Virus Integrase

  • Kang, Seung-Yi;Ahn, Dog-Gn;Lee, Chan;Lee, Yong-Sup;Shin, Cha-Gyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.6
    • /
    • pp.1044-1049
    • /
    • 2008
  • In order to study functional nucleotides in prototype foamy virus (PFV) DNA on specific recognition by PFV integrase (IN), we designed chimeric U5 long terminal repeat (LTR) DNA substrates by exchanging comparative sequences between human immunodeficiency virus type-1 (HIV-1) and PFV U5 LTRs, and investigated the 3'-end processing reactivity using HIV-1 and PFV INs, respectively. HIV-1 IN recognized the nucleotides present in the fifth and sixth positions at the 3'-end of the substrates more specifically than any other nucleotides in the viral DNA. However, PFV IN recognized the eighth and ninth nucleotides as distinctively as the fifth and sixth nucleotides in the reactions. In addition, none of the nucleotides present in the twelfth, sixteenth, seventeenth, eighteenth, nineteenth, and twentieth positions were not differentially recognized by HIV-1 and PFV INs, respectively. Therefore, our results suggest that the functional nucleotides that are specifically recognized by its own IN in the PFV U5 LTR are different from those in the HIV-1 U5 LTR in aspects of the positions and nucleotide sequences. Furthermore, it is proposed that the functional nucleotides related to the specific recognition by retroviral INs are present inside ten nucleotides from the 3'-end of the U5 LTR.

Investigation of Deletion Variation and Methylation Patterns in the 5' LTR of Porcine Endogenous Retroviruses

  • Jung, K.C.;Simond, D.M.;Moran, C.;Hawthorne, W.J.;Jeon, J.T.;Jin, D.I.;Lee, J.H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.21 no.11
    • /
    • pp.1572-1575
    • /
    • 2008
  • The xenotransplantation of pig organs and cells can be related with a risk of transmission of infectious diseases to human. Previous findings indicate that the regulatory region of PERV for retroviral transcription, replication and integration into the cellular DNA is located on the 5' Long Terminal Repeat (LTR). The objective of this study is the investigation of methylation and deletion status of the PERV 5' LTR region which can be used for regulating PERV expression. We compared the sequences of genomic DNA and bisulfite-treated genomic DNA from PK-15 cells expressing PERV to observe the methylation status of the 5' LTR. Our results showed that the CpG sites of U3 were methylated and methylation was inconsistent in the R and U5 regions. Also, variable numbers of 18 bp repeats and 21 bp repeats were detected on 5' LTR by sequencing analysis. The consistent U3 methylation might be indicative of host suppression of expression of the retroviruses.

Z-DNA-Containing Long Terminal Repeats of Human Endogenous Retrovirus Families Provide Alternative Promoters for Human Functional Genes

  • Lee, Du Hyeong;Bae, Woo Hyeon;Ha, Hongseok;Park, Eun Gyung;Lee, Yun Ju;Kim, Woo Ryung;Kim, Heui-Soo
    • Molecules and Cells
    • /
    • v.45 no.8
    • /
    • pp.522-530
    • /
    • 2022
  • Transposable elements (TEs) account for approximately 45% of the human genome. TEs have proliferated randomly and integrated into functional genes during hominoid radiation. They appear as right-handed B-DNA double helices and slightly elongated left-handed Z-DNAs. Human endogenous retrovirus (HERV) families are widely distributed in human chromosomes at a ratio of 8%. They contain a 5'-long terminal repeat (LTR)-gag-pol-env-3'-LTR structure. LTRs contain the U3 enhancer and promoter region, transcribed R region, and U5 region. LTRs can influence host gene expression by acting as regulatory elements. In this review, we describe the alternative promoters derived from LTR elements that overlap Z-DNA by comparing Z-hunt and DeepZ data for human functional genes. We also present evidence showing the regulatory activity of LTR elements containing Z-DNA in GSDML. Taken together, the regulatory activity of LTR elements with Z-DNA allows us to understand gene function in relation to various human diseases.

Promoter Activity of the Long Terminal Repeats of Porcine Endogenous Retroviruses of the Korean Domestic Pig

  • Ha, Hong-Seok;Huh, Jae-Won;Kim, Dae-Soo;Kang, Dong-Woo;Cho, Byung-Wook;Kim, Heui-Soo
    • Molecules and Cells
    • /
    • v.24 no.1
    • /
    • pp.148-151
    • /
    • 2007
  • Porcine endogenous retroviruses (PERVs) in the pig genome represent a potential risk of infection in pig-to-human transplantation and are transmitted vertically. The solitary long terminal repeat (LTR) elements of the PERVs affect the replication properties of the individual viruses via their repeat sequences and by encoding a set of specific transcription factors. We examined the promoter activities of solitary LTR elements belonging to the PERV-A and -B families of the Korean domestic pig (KDP) using luciferase reporters. Three of the LTR structures (of PERV-A5-KDP, PERV-A7-KDP, PERV-A8-KDP) had different promoter activities in human HCT116 cells and monkey Cos7 cells, and potential negatively and positively acting regions affecting transcription were identified by deletion analysis. These data suggest that specific sequences in the U3 region of a given LTR element can affect the activities of promoter or enhancer elements in the PERV.

Characterization of Biochemical Properties of Feline Foamy Virus Integrase

  • Lee, Dong-Hyun;Hyun, U-Sok;Kim, Ji-Ye;Shin, Cha-Gyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.6
    • /
    • pp.968-973
    • /
    • 2010
  • In order to study its biochemical properties, the integrase (IN) protein of feline foamy virus (FFV) was overexpressed in Escherichia coli, purified by two-step chromatography, (Talon column and heparin column), and characterized in biochemical aspects. For the three enzymatic reactions of the 3'-processing, strand transfer, and disintegration activities, the $Mn^{2+}$ ion was essentially required as a cofactor. Interestingly, $Co^{2+}$ and $Zn^{2+}$ ions were found to act as effective cofactors, whereas other transition elements such as $Ni^{2+}$, $Cu^{2+}$, $La^{3+}$, $Y^{3+}$, $Cd^{2+}$, $Li^{1+}$, $Ba^{2+}$, $Sr^{2+}$, and $V^{3+}$ were not. Regarding the substrate specificity, FFV IN has low substrate specificities as it cleaved in a significant level prototype foamy virus (PFV) U5 LTR substrate as well as FFV U5 LTR substrate, whereas PFV IN did not. Finally, the 3'-processing activity was observed in high concentrations of several solvents such as CHAPS, glycerol, Tween 20, and Triton X-100, which are generally used for dissolution of chemicals in inhibitor screening. Therefore, in this first report showing its biochemical properties, FFV IN is proposed to have low specificities on the use of cofactor and substrate for enzymatic reaction as compared with other retroviral INs.

Human transcription factor YY1 could upregulate the HIV-1 gene expression

  • Yu, Kyung Lee;Jung, Yu Mi;Park, Seong Hyun;Lee, Seong Deok;You, Ji Chang
    • BMB Reports
    • /
    • v.53 no.5
    • /
    • pp.248-253
    • /
    • 2020
  • Gene expression in HIV-1 is regulated by the promoters in 5' long-terminal repeat (LTR) element, which contain multiple DNA regulatory elements that serve as binding sites for cellular transcription factors. YY1 could repress HIV-1 gene expression and latent infection. Here, however, we observed that virus production can be increased by YY1 over-expression and decreased under YY1 depleted condition by siRNA treatment. To identify functional domain(s) of YY1 activation, we constructed a number of YY1 truncated mutants. Our data show that full-length YY1 enhances the viral transcription both through U3 and U3RU5 promoters. Moreover, the C-terminal region (296-414 residues) of YY1 is responsible for the transcriptional upregulation, which could be enhanced further in the presence of the viral Tat protein. The central domain of YY1 (155-295 residues) does not affect LTR activity but has a negative effect on HIV-1 gene expression. Taken together, our study shows that YY1 could act as a transcriptional activator in HIV-1 replication, at least in the early stages of infection.

Complete Sequences of HIV-1 in a Korean Long-term Nonprogressor with HIV-1 Infection (장기간 진행하지 않는 인면역결핍바이러스(Human Immunodeficiency Virus, HIV)-1 감염자로부터 분리한 HIV-1의 전체 염기서열 결정)

  • Cho, Young-Keol;Lee, Hee-Jung;Desrosiers, Ronald C.
    • The Journal of Korean Society of Virology
    • /
    • v.29 no.2
    • /
    • pp.107-118
    • /
    • 1999
  • To characterize the molecular nature of human immunodeficiency virus (HIV)-1, we determined the full-length HIV-1 sequences from cultured peripheral blood mononuclear cells (PBMC) of a Korean long-term nonprogressor (LTNP). Without antiretroviral therapy, the individual has maintained CD4+ T counts over $500/{\mu}l$ from 1989 to 1999. Plasma viral RNA copy was 992 U/ml in 1998. Culture supernatant showed positive from culture days 9. A series of 9 overlapping PCR products were amplified from cultured PBMC and cloned About 9.2 kb from R of 5' LTR to R of 3' LTR was determined by automated sequencing. The G-to-A hypermutations were shown throughout the entire region. As a result of G to A hypermutations, premature stop codon was found in integrase coding region. Though there was no recombination between subtypes over all genomes, TATA box in both LTRs was TAAAA which is detected in subtype E instead of TATAA in subtype B. And, there were nucleotide GC insertion between $NF-{\kappa}B$ I and Sp1 III, and duplication of $TCF-1{\alpha}$ in LTR. We could not find any deletion of amino acid in Nef, Gag, Pol and Env gene. This study is the first report on molecular nature of full genomes of HIV-1 isolated in Korea.

  • PDF

Investigation of function and regulation of the YB-1 cellular factor in HIV replication

  • Jung, Yu-Mi;Yu, Kyung-Lee;Park, Seong-Hyun;Lee, Seong-Deok;Kim, Min-Jeong;You, Ji-Chang
    • BMB Reports
    • /
    • v.51 no.6
    • /
    • pp.290-295
    • /
    • 2018
  • Y-box binding protein 1 (YB-1) is a member of the cold-shock domain (CSD) protein superfamily. It participates in a wide variety of cellular events, including transcription, RNA splicing, translation, DNA repair, drug resistance, and stress responses. We investigated putative functions of YB-1 in HIV-1 replication. Functional studies using overexpression or knockdown of YB-1 in conjunction with transfection of proviral DNA showed that YB-1 enhances virus production. We found YB-1 regulates HIV-1 production by stimulating viral transcription using HIV-1 LTR sequence U3RU5 with Luciferase assay. We also identified a specific region from amino acids 1 to 324 of YB-1 as necessary for the participation of the protein in the production of virions.

Anti-dementia Effects of Gouteng-san and Si-Wu-Tang

  • Watanabe, Hiroshi
    • Toxicological Research
    • /
    • v.17
    • /
    • pp.257-261
    • /
    • 2001
  • Recently, a traditional medicine called Gouteng-san, which consists of eleven herbs, was reported to be effective in treating vascular dementia with a double-blind, placebo-controlled study. Gout-eng-san is also used for patients with vascular dementia in combination with Si-Wu-Tang. The effect of Gouteng-san and Si-Wu-Tang on deficit of learning behavior was investigated using step-down passive avoidance task in mice. Hot-water extract of Gouteng-san (1.5 and 6 g/kg, p.o.) significantly prolonged the step-down latency shortened by scopolamine. The extract of Uncaria hook (150 mg/kg, p.o.), one of the component herb of Gouteng-san, significantly prevented the decrease in the latency after scopolamine. Hot-water extract of Si-Wu-Tang (1.5 and 6 g/kg of dried herbs, p.o.) prevented dose-dependently scopola-mine-induced disruption qf learning behavior. Si-Wu-Tang also prevented the ischemia-induced deficit of learning behavior. Both hot water extract of peony and angelica (1.5 g/kg, p.o.), which are component herbs qf Si-Wu-Tang, prevented the scopolamine-induced learning behavior deficit. Scopolamine (10 uM) suppressed long-term potentiation (LTP) of population spike in the CA1 region of the rat hippocampal slices. Peoniflorin (0.1~ 1uM) extracted from paeony root significantly ameliorated scopolamine-induced inhibition of LTR These results suggest that improvement of deficit of learning behavior by Gouteng-san and Si-Wu-Tang is mediated by direct and/or indirect activation of the cholinergic system in the brain.

  • PDF